Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3376–3386 | Cite as

Effect of different drying methods on antioxidant characteristics of bee-pollen

  • Yeliz Kanar
  • Bekir Gökçen MazıEmail author
Original Paper
  • 32 Downloads

Abstract

In this study, microwave drying (MWD) and microwave-assisted vacuum drying (MW-VD) (500, 675 mbar) at power levels of 300, 450, 600 and 900 W, hot-air drying (HAD) and vacuum drying (VD) (300, 500 mbar) at temperatures of 35, 50, 65 °C and freeze drying (FD) of bee-pollen were investigated in relation to its total phenolic content (TPC), antioxidant vitamin composition (C and E) and antioxidant capacity. HAD at 35 °C provided similar vitamin C content as compared to fresh pollen while all other treatments led to significant loss ranging between 14.3 and 61.3%. Retention of vitamin E level in dried pollen ranged between 71 and 87%. Except vitamin C, MWD at lower power levels provided better or similar values of above mentioned properties as compared to HAD and FD treatments. The data indicated that pollen dried by MW-VD had higher antioxidant activity compared to samples dried by HAD irrespective of the applied pressure or power level.

Keywords

Bee-pollen Microwave drying Freeze drying Vitamin C Vitamin E Antioxidant activity 

Notes

Acknowledgements

This work was supported by a Grant from Ordu University (TF 1538).

References

  1. 1.
    K. Komosinska-Vassev, P. Olczyk, J. Kazmierczak, L. Mencner, K. Olczyk, Evid. Based Complement Altern. Med. (2015).  https://doi.org/10.1155/2015/297425 CrossRefGoogle Scholar
  2. 2.
    B. Denisow, M. Denisow-Pietrzyk, J. Sci. Food Agric. 96(13), 4303–4309 (2016)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Rzepecka-Stojko, J. Stojko, A. Kurek-Gorecka, M. Gorecki, A. Kabala-Dzik, R. Kubina, A. Mozdzierz, E. Buszman, Molecules 20(12), 21732–21749 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    D. Ozkok, S. Silici, Food Sci. Biotechnol. 26(1), 201–206 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Z. Kalaycioglu, H. Kaygusuz, S. Doker, S. Kolayli, F.B. Erim, LWT-Food. Sci. Technol. 84, 402–408 (2017)Google Scholar
  6. 6.
    K. Ozkan, N. Sagcan, G. Ozulku, O. Sagdic, O.S. Toker, M.N. Muz, J. Food Meas. Charact. 12(1), 581–587 (2018)CrossRefGoogle Scholar
  7. 7.
    R. Spulber, M. Dogaroglu, N. Babeanu, O. Popa, Rom. Biotech. Lett. 23(1), 13357–13365 (2018)Google Scholar
  8. 8.
    M. Leja, A. Mareczek, G. Wyzgolik, J. Klepacz-Baniak, K. Czekonsk, Food Chem. 100(1), 237–240 (2007)CrossRefGoogle Scholar
  9. 9.
    M.R.S. Vasconcelos, A.W.F. Duarte, E.P. Gomes, S.C. da Silva, A.M.Q. Lopez, Ciênc. Agrotecnol. 41(4), 447–458 (2017)CrossRefGoogle Scholar
  10. 10.
    L.G. Dias, G. Tolentino, A. Pascoal, L.M. Estevinho, J. Apic. Res. 55(5), 357–365 (2016)CrossRefGoogle Scholar
  11. 11.
    I. Cinkmanis, F. Dimins, V. Mikelsone, in 11th Baltic Conference on Food Science and Technology: Food Science and Technology in a Changing World. (2017).  https://doi.org/10.22616/foodbalt.2017.038
  12. 12.
    G. Conte, G. Benelli, A. Serra, F. Signorini, M. Bientinesi, C. Nicolella, M. Mele, A. Canale, J. Food Compos. Anal. 55, 12–19 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Barajas, M. Cortes-Rodriguez, E. Rodriguez-Sandoval, J. Food Process Eng. 35(1), 134–148 (2012)CrossRefGoogle Scholar
  14. 14.
    I.L.P. De Melo, L.B. de Almeida-Muradian, Quim. Nova 33(3), 514–518 (2010)CrossRefGoogle Scholar
  15. 15.
    D. Dominguez-Valhondo, D.B. Gil, M.T. Hernandez, D. Gonzalez-Gomez, Int. J. Food Sci. Technol. 46(10), 2204–2211 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Zuluaga-Dominguez, J. Serrato-Bermudez, M. Quicazan, Eng. Agr. Environ. Food. 11(2), 57–64 (2018)Google Scholar
  17. 17.
    L.B. Almeida-Muradian, L.C. Pamplona, S. Coimbra, O.M. Barth, J. Food Compos. Anal. 18(1), 105–111 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Ranieri, G. Benelli, A. Castagna, C. Sgherri, F. Signorini, M. Bientinesi, C. Nicolella, A. Canale, Saudi. J. Biol. Sci. (2017).  https://doi.org/10.1016/j.sjbs.2017.08.011 CrossRefGoogle Scholar
  19. 19.
    A. Canale, G. Benelli, A. Castagna, C. Sgherri, P. Poli, A. Serra, M. Mele, A. Ranieri, F. Signorini, M. Bientinesi, C. Nicolella, Materials (2016).  https://doi.org/10.3390/ma9050363 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    AOAC, Official methods of analysis, 17th edn. (The Association of Official Analytical Chemists, Gaithersburg, 2000)Google Scholar
  21. 21.
    S.K. Gri, S. Prasad, Dry. Technol. 25, 901–911 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Zhang, M. Zhang, L. Shan, Z. Fang, J. Food Eng. 79, 885–891 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Motevali, S. Minaei, M.H. Khoshtaghaza, H. Energy. 36, 6433–6441 (2011)CrossRefGoogle Scholar
  24. 24.
    A.E. Drouzas, J. Food Eng. 39, 117–122 (1999)CrossRefGoogle Scholar
  25. 25.
    G. Akar, I. Barutçu Mazı, J. Food Process. Eng. 42, 11 (2018)Google Scholar
  26. 26.
    N.G. Baydar, G. Özkan, Eur. Food Res. Technol. 223(2), 290–293 (2006)CrossRefGoogle Scholar
  27. 27.
    S.S. Turgut, E. Kucukoner, E. Karacabey, Food Bioprocess Techol. 11(10), 1818–1827 (2018)CrossRefGoogle Scholar
  28. 28.
    K. Slinkard, V.L. Singleton, Am. J. Enol. Viticult. 28(1), 49–55 (1977)Google Scholar
  29. 29.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - LWT-Food Sci. Technol. 28(1), 25–30 (1995)CrossRefGoogle Scholar
  30. 30.
    H. Baydar, F. Gürel, Turk. J. Agric. For. 22, 475–482 (1998)Google Scholar
  31. 31.
    V. Orsat, V. Changrue, G.S.V. Raghavan, Stewart Postharvest Rev. 2(6), 1–7 (2006)Google Scholar
  32. 32.
    I.L.P. De Melo, L.B. de Almeida-Muradian, Ciencia Tecnol. Alime. 31, 194–197 (2011)CrossRefGoogle Scholar
  33. 33.
    N.O. Alayunt, Y. Karagozoglu, A.E. Parlak, S. Türkoglu, Asian J. Chem. 25(12), 6870e–6872 (2013)CrossRefGoogle Scholar
  34. 34.
    P.H.S. Santos, M.A. Silva, Dry. Technol. 26(12), 1421–1437 (2008)CrossRefGoogle Scholar
  35. 35.
    S.S. Sablani, Dry. Technol. 24(2), 123–135 (2006)CrossRefGoogle Scholar
  36. 36.
    J.A.G. Sattler, I.L.P. Melo, D. Granato, E. Araújo, A.S. Freitas, O.M. Barth, A. Sattler, L.B. Almeida-Muradian, Food Res. Int. 77, 82–91 (2015)CrossRefGoogle Scholar
  37. 37.
    O. Miyawaki, T. Sugiyama, E. Inoue, Jpn. J. Food Eng. 17(2), 51–55 (2016)CrossRefGoogle Scholar
  38. 38.
    J. Wang, C.L. Law, A.S. Mujumdar, H.W. Xiao, (2017), https://www.researchgate.net/publication/319527724. Accessed 23 Mar 2019
  39. 39.
    L.G. Marques, A.M. Silveira, J.T. Freire, Dry. Technol. 24(4), 457–463 (2006).  https://doi.org/10.1080/07373930600611919 CrossRefGoogle Scholar
  40. 40.
    L.G. Marques, M.C. Ferreira, J.T. Freire, Chem. Eng. Process. 46, 451–457 (2007)CrossRefGoogle Scholar
  41. 41.
    S.Y. Leong, I. Oey, Food Chem. 133, 1577–1587 (2012)CrossRefGoogle Scholar
  42. 42.
    L. Guo, R. Yang, Z. Wang, Z. Gu, RSC Adv. 5(41), 32290–32297 (2015)CrossRefGoogle Scholar
  43. 43.
    D.K. Assami, Y. Hong, D.M. Barret, A.E. Mitchell, J. Agric. Food Chem. 51, 1237–1241 (2003)CrossRefGoogle Scholar
  44. 44.
    W. Dong, K. Cheng, R. Hu, C. Zhong, Z. Jianping, Y. Long, Molecules 23, 1146 (2018)PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    H.U. Hebbar, K.E. Nandini, M.C. Lakshmi, R. Subramanian, Food Sci. Technol. Res. 9(1), 49–53 (2003)CrossRefGoogle Scholar
  46. 46.
    K.C.L.S. Oliveira, M. Moriya, R.A.B. Azedo, L.B. Almeida-Muradian, Quim. Nova 32(5), 1099–1102 (2009)CrossRefGoogle Scholar
  47. 47.
    J. Housova, K. Hoke, Czech J. Food Sci. 20(3), 117–124 (2002)CrossRefGoogle Scholar
  48. 48.
    Q.H. Gao, C.S. Wu, M. Wang, B.N. Xu, L.J. Du, J. Agric. Food Chem. 60(38), 9642–9648 (2012)PubMedCrossRefGoogle Scholar
  49. 49.
    S. Kamiloglu, G. Toydemir, D. Boyacioglu, J. Beekwilder, R.D. Hall, E. Capanoglu, Crit. Rev. Food Sci. Nutr. (2016).  https://doi.org/10.1080/10408398.2015.1045969 CrossRefPubMedGoogle Scholar
  50. 50.
    G. Izli, Food Sci. Technol. (Campinas) (2016).  https://doi.org/10.1590/1678-457x.14516 CrossRefGoogle Scholar
  51. 51.
    N. Aghilinategh, S. Rafiee, A. Gholikhani, S. Hosseinpur, M. Omid, S.S. Mohtasebi, N. Maleki, Food Sci. Nutr. 3(6), 519–526 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    C.H. Chang, H.Y. Lin, C.Y. Chang, Y.C. Liu, J. Food Eng. 77(3), 478–485 (2006)CrossRefGoogle Scholar
  53. 53.
    S. Roshanak, M. Rahimmalek, S.A. Goli, J. Food Sci. Technol. 53(1), 721–729 (2016)PubMedCrossRefGoogle Scholar
  54. 54.
    L. Valadez-Carmona, R.M. Cortez-Garcia, C.P. Plazola-Jacinto, H. Necoechea-Mondragon, A. Ortiz-Moreno, J. Food Sci. Technol. 53(9), 3495–3501 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    K.R.L. Freire, A.C.S. Lins, M.C. Dorea, F.A.R. Santos, C.A. Camara, T.M.S. Silva, Molecules 17(2), 1652–1664 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, J. Nutr. Biochem. 13(10), 572–584 (2002)PubMedCrossRefGoogle Scholar
  57. 57.
    I.S. Nguyen, S.L. Cai, T. Feng, Q.A. Wang, Org. Chem. Ind. J. 11(6), 234–238 (2015)Google Scholar
  58. 58.
    K. Hayat, X. Zhang, U. Farooq, S. Abbas, S. Xia, C. Jia, F. Zhong, J. Zhang, Food Chem. 123(2), 423–429 (2010)CrossRefGoogle Scholar
  59. 59.
    A. Isik, M. Ozdemir, I. Doymaz, Czech J. Food Sci. 37, 69–74 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering, Agricultural FacultyOrdu UniversityOrduTurkey

Personalised recommendations