Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3366–3375 | Cite as

Flavor and antioxidant activity improvement of carrot juice by fermentation with Lactobacillus plantarum WZ-01

  • Xianyan Zhang
  • Wenyang Duan
  • Jiaxing Zou
  • Huabin ZhouEmail author
  • Changwu Liu
  • Hailong YangEmail author
Original Paper


A strain WZ-01 that can improve the flavor of carrot juice was isolated from naturally fermented orange and identified as Lactobacillus plantarum by 16S rRNA sequence analysis. After inoculation into carrot juice, L. plantarum WZ-01 could proliferate rapidly, and the bacterial population increased from 5.5 × 104 to 5.3 × 108 CFU mL−1 in 48 h. Organic acids were produced, resulting in a decrease in the pH value. Fermentation simultaneously enhanced the antioxidant activity of carrot juice and slightly changed the color and carotenoids content of the carrot juice. Solid-phase microextraction-gas chromatography–mass spectrometry analysis showed that β-pinene and β-phellandrene disappeared, and the relative contents of α-pinene, sabinene and β-myrcene decreased, while some aldehydes and ketones were formed by fermentation. Fermentation by strain WZ-01 could significantly weaken the terpene flavor of carrot juice and improve its sensory qualities.


Carrot juice Lactobacillus plantarum Fermentation Flavor Antioxidant activity 



The authors thank Zhejiang Department of Science and Technology, China, for financial support under the Zhejiang New Talent Project (Project No. 2017R426071).


  1. 1.
    S. Kun, J.M. Rezessy-Szabó, Q.D. Nguyen, Á. Hoschke, Process Biochem. 43, 816–821 (2008)CrossRefGoogle Scholar
  2. 2.
    K.A. Riganakos, I.K. Karabagias, I. Gertzou, M. Stahl, Innov. Food Sci. Emerg. Technol. 42, 165–172 (2017)CrossRefGoogle Scholar
  3. 3.
    S.W. Lee, B.K. Kim, J.A. Han, LWT-Food Sci. Technol. 93, 346–353 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Keilwagen, H. Lehnert, T. Berner, H. Budahn, T. Nothnagel, D. Ulrich, F. Dunemann, Front. Plant Sci. 8, 1930 (2017)Google Scholar
  5. 5.
    F. Kjeldsen, L.P. Christensen, M. Edelenbos, J. Agric. Food Chem. 51, 5400–5407 (2003)CrossRefGoogle Scholar
  6. 6.
    T. Xiong, X.J. Ma, Food Sci. 34(2), 152–154 (2013). In Chinese Google Scholar
  7. 7.
    S.J. Hur, S.Y. Lee, Y.C. Kim, I. Choi, G.B. Kim, Food Chem. 160, 346–356 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Wu, M. Yu, X. Liu, L. Meng, Q. Wang, Y. Xue, J. Wu, X. Yue, Int. J. Food Microbiol. 211, 23–31 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Wu, B. Zhuang, P. Weng, X. Zhang, Int. J. Food Prop. 19, 409–419 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Bel-Rhlid, R.G. Berger, I. Blank, Trends Food Sci. Technol. 78, 134–143 (2018)CrossRefGoogle Scholar
  11. 11.
    R. Di Cagno, P. Filannino, M. Gobbetti, Int. J. Food Microbiol. 248, 56–62 (2017)CrossRefGoogle Scholar
  12. 12.
    R.P. Goswami, G.K. Jayaprakasha, K. Shetty, B.S. Patil, Process Biochem. 66, 7–18 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Li, S.P. Nie, K.X. Zhu, T. Xiong, M.Y. Xie, Food Res. Int. 80, 36–40 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Li, S.P. Nie, Q. Ding, K.X. Zhu, Z.J. Wang, T. Xiong, J. Gong, M.Y. Xie, J. Funct. Foods 8, 340–347 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Trząskowskai, P. Gasentzer, J. Food Saf. 36, 571–576 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Nazzaro, F. Fratianni, A. Sada, P. Orlando, J. Sci. Food Agric. 88, 2271–2276 (2008)CrossRefGoogle Scholar
  17. 17.
    J.B. Park, S.H. Lim, H.S. Sim, J.H. Park, H.J. Kwon, H.S. Nam, M.D. Kim, H.H. Baek, S.J. Ha, Food Sci. Biotechnol. 26(2), 441–446 (2017)CrossRefGoogle Scholar
  18. 18.
    S.M.B. Hashemi, A.M. Khaneghah, F.J. Barba, Z. Nemati, S.S. Shokofti, F. Alizadeh, J. Func, Foods 38, 409–414 (2017)Google Scholar
  19. 19.
    S.M.B. Hashemi, A. Gholamhosseinpour, A.M. Khaneghah, LWT-Food Sci. Technol. 100, 144–149 (2019)CrossRefGoogle Scholar
  20. 20.
    J. Jung, H.J. Jang, S.J. Eom, N.S. Choi, N.K. Lee, H.D. Paik, J. Ginseng Res. 43, 20–26 (2019)CrossRefGoogle Scholar
  21. 21.
    H.E. Martínez-Flores, M.G. Garnica-Romo, D. Bermúdez-Aguirre, P.R. Pokhrel, G.V. Barbosa-Cánovas, Food Chem. 172, 650–656 (2015)CrossRefGoogle Scholar
  22. 22.
    F.Y. Ekinci, G.M. Baser, E. Özcan, Ö.G. Üstündağ, M. Korachi, A. Sofu, J.B. Blumberg, C.Y.O. Chen, Eur. Food Res. Technol. 242, 1355–1368 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Chen, G.Q. Liu, H.D. Yang, H.B. Zhou, H.L. Yang, Int. J. Food Eng. 13, 20160076 (2017)Google Scholar
  24. 24.
    Z. Liu, Z. Wang, X. Lv, X. Zhu, L. Chen, L. Ni, Food Microbiol. 69, 105–115 (2018)CrossRefGoogle Scholar
  25. 25.
    R. Di Cagno, R.F. Surico, A. Paradiso, M. de Angelis, J.C. Salmon, S. Buchin, L. de Gara, M. Gobbetti, Int. J. Food Microbiol. 128, 473–483 (2009)CrossRefGoogle Scholar
  26. 26.
    Y.S. Seo, H.N. Bae, S.H. Eom, K.S. Lim, I.H. Yun, Y.H. Chung, J.M. Jeon, H.W. Kim, M.S. Lee, Y.B. Lee, Y.M. Kim, Bioresources Technol. 121, 475–479 (2012)CrossRefGoogle Scholar
  27. 27.
    S.M.B. Hashemi, A.M. Khaneghah, M.G. Kontominas, I. Eş, A.S. Sant’Ana, R.R. Martinez, D. Drider, J. Sci. Food Agric. 97, 4595–4603 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Cendrowski, I. Ścibisz, M. Mitek, M. Kieliszek, J. Kolniak-Ostek, J. Food Qual. (2017). CrossRefGoogle Scholar
  29. 29.
    A. Cendrowski, I. Ścibisz, M. Kieliszek, J. Kolniak-Ostek, M. Mitek, Molecules 22, 1832 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Cendrowski, I. Ścibisz, M. Mitek, M. Kieliszek, Agrochimica 62(2), 157–165 (2018)Google Scholar
  31. 31.
    S.O. Owolade, A.O. Akinrinola, F.O. Popoola, O.R. Aderibigbe, O.T. Ademoyegun, I.A. Olabode, Int. Food Res. J. 24(2), 534–540 (2017)Google Scholar
  32. 32.
    O.Q. Adiamo, K. Ghafoor, F. Al-Juhaimi, E.E. Babiker, I.A.M. Ahmed, Food Chem. 245, 79–88 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Zhang, X. Zhao, Y. Jiang, W. Zhao, T. Guo, Y. Cao, J. Teng, X. Hao, J. Zhao, Z. Yang, J. Dairy Sci. 100, 6025–6041 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Li, Y. Zhao, L. Zhang, X. Zhang, L. Huang, D. Li, C. Niu, Z. Yang, Q. Wang, Food Chem. 135, 1914–1919 (2012)CrossRefGoogle Scholar
  35. 35.
    C.G. Rizzello, A. Lorusso, V. Russo, D. Pinto, B. Marzani, M. Gobbetti, Int. J. Food Microbiol. 241, 252–261 (2017)CrossRefGoogle Scholar
  36. 36.
    W. Tang, Z. Xing, C. Li, J. Wang, Y. Wang, Food Chem. 221, 1642–1649 (2017)CrossRefGoogle Scholar
  37. 37.
    P. Filannino, L. Azzi, I. Cavoski, O. Vincentini, C.G. Rizzello, M. Gobbetti, R. Di Cagno, Int. J. Food Microbiol. 163, 184–192 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Xiao, L. Wang, X. Rui, W. Li, X. Chen, M. Jiang, M. Dong, J. Funct. Foods 12, 33–44 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Kreutzmann, A.K. Thybo, M. Edelenbos, L.P. Christensen, Int. J. Food Sci. Technol. 43, 1619–1627 (2008)CrossRefGoogle Scholar
  40. 40.
    X.I. Trejo Araya, N. Smale, D. Zabaras, E. Winley, C. Forde, C.M. Stewart, A.J. Mawson, Innov. Food Sci. Emerg. Technol. 10, 420–433 (2009)CrossRefGoogle Scholar
  41. 41.
    P. Kandylis, K. Pissaridi, A. Bekatorou, M. Kanellaki, A.A. Koutinas, Curr. Opin. Food Sci. 7, 58–63 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life & Environmental ScienceWenzhou UniversityWenzhouChina
  2. 2.Zhejiang Baizhentang Food Co. LtdWenzhouChina

Personalised recommendations