Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3357–3365 | Cite as

Do Ganoderma lucidum and Salvia officinalis extracts exhibit synergistic antioxidant and antineurodegenerative effects?

  • Jasmina Ćilerdžić
  • Ana Alimpić Aradski
  • Mirjana StajićEmail author
  • Jelena Vukojević
  • Sonja Duletić-Laušević
Original Paper


Neurological disorders, especially Alzheimer’s and Parkinson’s diseases, are among the leading causes of death and disability nowdays. Ganoderma lucidum and Salvia officinalis have been used for prevention and treatment of numerous health problems since ancient times. However, despite the fact that their single extracts possess very strong antioxidant and antineurodegenerative properties, the effect of their combination has not yet been examined. Accordingly, the aim of this study was to investigate possible synergistic effects of combined G. lucidum and S. officinalis ethanol and aqueous extracts. The combinations were obtained by extraction of mixed G. lucidum and S. officinalis dried materials, as well as by mixing of their extracts in different proportions (70:30, 50:50, 30:70). Generally, S. officinalis extracts were stronger antioxidants than those of G. lucidum, and were especially more efficient reducers of Fe3+ and neutralizers of DPPH and ABTS radicals. In DPPH· and ABTS· neutralization, strong synergism was noted for the ethanol extract of a combination of dried G. lucidum and S. officinalis materials (30:70). With respect to acetylcholinesterase inhibition, strong synergism was noted for the mixture of dried G. lucidum and S. officinalis materials (70:30) and mixture of their extracts (30:70), while the same effect on tyrosinase activity was observed only in the case of a mixture of equal dried materials. It follows that efficient G. lucidum/S. officinalis mixtures could be a basis for producing novel food ingredients with antioxidant and antineurodegenerative properties.


Acetylcholinesterase inhibition Ganoderma lucidum Free radical neutralization Salvia officinalis Synergism Tyrosinase inhibition 



This study was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (under Projects Nos. 173032 and 173029). The authors are grateful to Mr. Raymond Dooley for proofreading the manuscript and correcting the English.


  1. 1.
    S.P. Wasser, E. Akavia, Regulatory issues of mushrooms as functional foods ans dietary supplements: safety and efficacy, in Mushrooms as Functional Foods, ed. by P.C.K. Cheung (Wiley, Hoboken, 2008), pp. 199–226CrossRefGoogle Scholar
  2. 2.
    J. Massano, K. Bhatia, Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. CSH Perspect. Med. 2, a008870 (2012)Google Scholar
  3. 3.
    B. Halliwell, Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    J. Ćilerdžić, M. Stajić, J. Vukojević, S. Duletić-Laušević, Oxidative stress and species of genus Ganoderma (Higher Basidiomycetes). Int. J. Med. Mushrooms 15, 21–28 (2013)PubMedCrossRefGoogle Scholar
  5. 5.
    M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B 39, 44–84 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Jiang, Q. Suna, S. Chena, Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 147, 1–19 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    H.O. Malve, Management of Alzheimer’s disease: role of existing therapies, traditional medicines and new treatment targets. Indian J. Pharm. Sci. 79, 2–15 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Tramutola, C. Lanzillotta, M. Perluigi, D.A. Butterfield, Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 133, 88–96 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    T. Hasegawa, Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease. Int. J. Mol. Sci. 11, 1082–1089 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    C.W. Phan, P. David, M. Naidu, K.H. Wong, V. Sabaratnam, Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit. Rev. Biotechnol. 35, 355–368 (2015)PubMedCrossRefGoogle Scholar
  11. 11.
    M. Hamidpour, R. Hamidpour, S. Hamidpour, M. Shahlari, Chemistry, pharmacology, and medicinal property of Sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J. Tradit. Complement. Med. 4, 82–88 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    R.R.M. Paterson, Ganoderma—a therapeutic fungal biofactory. Phytochemistry 67, 1985–2001 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Akhondzadeh, M. Noroozian, M. Mohammadi, S. Ohadinia, A.H. Jamshidi, M. Khani, Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 28, 53–59 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    A. Ghorbani, M. Esmaeilizadeh, Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 7, 433–440 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    A. Hasnat, M. Pervin, B.O. Lim, Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice. Molecules 18, 6663–6678 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    I.C.F.R. Ferreira, S.A. Heleno, F.S. Reis, D. Stojkovic, M.J.R.P. Queiroz, M.H. Vasconcelos, M. Sokovic, Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114, 38–55 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    K.S. Sonam, S. Guleria, Synergistic antioxidant activity of natural products. Ann. Pharmacol. Pharm. 16, 1–6 (2017)Google Scholar
  18. 18.
    W. Chen, Y. Zhang, N. Tan, Y. Qi, J.S. Zhu, Synergy of Ganoderma lucidum extract ReishiMax and green tea polyphenols tegreen in anti-cancer in a S180-inoculation model. FASEB J. Meeting 21(6), Abstract# 852.3 (2007)Google Scholar
  19. 19.
    A. Thyagarajan, J. Zhu, D. Silva, Combined effect of green tea and Ganoderma lucidum on invasive behavior of breast cancer cells. Int. J. Oncol. 30, 963–969 (2007)PubMedPubMedCentralGoogle Scholar
  20. 20.
    J. Dao, T.C.S. Dao, D.D. Tong, L. Wilson, M.A. Jordan, W. Gerwick, Inventors; Genyous Biomed International Inc, assignee. Compositions of botanical extracts for cancer therapy. Canadian patent CA 2538218C (2014)Google Scholar
  21. 21.
    J. Ćilerdžić, J. Vukojević, M. Stajić, T. Stanojković, J. Glamočlija, Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate extracts. J. Ethnopharmacol. 155, 312–319 (2014)PubMedCrossRefGoogle Scholar
  22. 22.
    J.L. Ćilerdžić, I.V. Sofrenić, V.V. Tešević, I.D. Brčeski, S.N. Duletić-Laušević, J.B. Vukojević, M.M. Stajić, Neuroprotective potential and chemical profile of alternatively cultivated Ganoderma lucidum basidiocarps. Chem. Biodivers. 15(5), e1800036 (2018)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Duletić-Laušević, A. Alimpić, D. Pavlović, P.D. Marin, D. Lakušić, Salvia officinalis of different origin Antioxidant activity, phenolic and flavonoid content of extracts. Agro. Food. Ind. Hi Tech 27, 52–55 (2016)Google Scholar
  24. 24.
    J. Ćilerdžić, J. Vukojević, A. Klaus, Ž. Ivanović, J. Blagojević, M. Stajić, Wheat straw—a promising substrate for Ganoderma lucidum cultivation. Acta Sci. Pol. Hortorum Cultus 17, 13–22 (2018)CrossRefGoogle Scholar
  25. 25.
    N.J. Miller, C. Rice-Evans, M.J. Davies, V. Gopinathan, A. Milner, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84, 407–412 (1993)PubMedCrossRefGoogle Scholar
  26. 26.
    I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  27. 27.
    A. Dapkevicius, R. Venskutonis, T.A. van Beek, J.P.H. Linssen, Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J. Sci. Food. Agric. 77, 140–146 (1998)CrossRefGoogle Scholar
  28. 28.
    Y.K. Park, M.H. Koo, M. Ikegaki, J.L. Contado, Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq. Biol. Tecnol. 40, 97–106 (1997)Google Scholar
  29. 29.
    V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticul. 16, 144–158 (1965)Google Scholar
  30. 30.
    G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961)CrossRefGoogle Scholar
  31. 31.
    T. Masuda, D. Yamashita, Y. Takeda, S. Yonemori, Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 69, 197–201 (2005)CrossRefGoogle Scholar
  32. 32.
    E.R. Nedamani, A.S. Mahoonak, M. Ghorbani, M. Kashaninejad, Antioxidant properties of individual vs combined extracts of rosemary leaves and oak fruit. J. Agric. Sci. Technol. 16, 1575–1586 (2014)Google Scholar
  33. 33.
    B. Queirós, J.C.M. Barreira, A.C. Sarmento, I.C.F.R. Ferreira, In search of synergistic effects in antioxidant capacity of combined edible mushrooms. Int. J. Food Sci. Nutr. 60, 160–172 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    V. Vieira, A. Marques, L. Barros, J.C.M. Barreira, I.C.F.R. Ferreira, Insights in the antioxidant synergistic effects of combined edible mushrooms: phenolic and polysaccharidic extracts of Boletus edulis and Marasmius oreades. J. Food. Nutr. Res. 51, 109–116 (2012)Google Scholar
  35. 35.
    R. Taylor, Interpretation of the correlation coefficient: a basic review. JDMS 1, 35–39 (1990)Google Scholar
  36. 36.
    O. Hammer, D.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001)Google Scholar
  37. 37.
    A.L. Lovesti, Salvia (Sage): a review of its potential cognitive-enhancing and protective effects. Drugs R D. 17, 53–64 (2017)CrossRefGoogle Scholar
  38. 38.
    E.K. Perry, A.T. Pickering, W.W. Wang, P.J. Houghton, N.S. Perry, Medicinal plants and Alzheimer´s disease: from ethnobotany to phytotherapy. J. Pharm. Pharmacol. 51, 527–534 (1999)PubMedCrossRefGoogle Scholar
  39. 39.
    S.M. Albano, M.G. Miguel, Biological activities of extracts of plants grown in Portugal. Ind. Crop. Prod. 33, 338–343 (2011)CrossRefGoogle Scholar
  40. 40.
    N. Martins, L. Barros, C. Santos-Buelga, M. Henriques, S. Silva, I.C.F.R. Ferreira, Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 170, 378–385 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    V. Sulniute, O. Ragazinskiene, P.R. Venskutonis, Comprehensive evaluation of antioxidant potential of 10 Salvia species using high pressure methods for the isolation of lipophilic and hydrophilic plant fractions. Plant Food Hum. Nutr. 71, 64–71 (2016)CrossRefGoogle Scholar
  42. 42.
    I.C.F.R. Ferreira, C. Proenca, M.L.M. Serralheiro, M.E.M. Araujo, The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 108, 31–37 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    R. Kaur, V. Singh, R. Shri, Anti-amnesic effects of Ganoderma species: a possible cholinergic and antioxidant mechanism. Biomed. Pharmacother. 92, 1055–1061 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    C. Zhao, C. Zhang, Z. Xing, Z. Ahmad, J.S. Li, M.W. Chang, Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: a comprehensive review. Int. J. Biol. Macromol. 121, 1160–1178 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    M.B. Farhat, R. Chaouch-Hamada, J.A. Sotomayor, A. Landoulsi, M.J. Jordán, Antioxidant potential of Salvia officinalis L. residues as affected by the harvesting time. Ind. Crops Prod. 54, 78–85 (2014)CrossRefGoogle Scholar
  46. 46.
    C.S. Garcia, C. Menti, A.P. Lambert, T. Barcellos, S. Moura, C. Calloni, C.S. Branco, M. Salvador, M. Roesch-Ely, J.A. Henriques, Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells. An. Acad. Bras. Ciênc. 88, 281–292 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Y. Lu, L.Y. Foo, Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 55, 263–267 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    M. Stajić, J. Vukojević, A. Knežević, S. Duletić Laušević, I. Milovanović, Antioxidant protective effects of mushroom metabolites. Curr. Top. Med. Chem. 13, 2660–2676 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    P. Russo, A. Frustaci, A. Del Bufalo, M. Fini, A. Cesario, From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: acetylcholinesterase inhibitors. Curr. Med. Chem. 20, 976–983 (2013)PubMedPubMedCentralGoogle Scholar
  50. 50.
    H.S. Yang, Y.J. Choi, J.H. Jo, S.C. Lee, K.J. Kim, S.W. Ji, T.Y. Park, C.K. Huh, Neuroprotective activities of fermented Ganoderma lucidum extracts by lactic acid bacteria against H2O2-stimulated oxidative stress in PC12 cells. Food Sci. Biotechnol. 24, 1413–1420 (2015)CrossRefGoogle Scholar
  51. 51.
    I. Lee, B. Ahn, J. Choi, M. Hattori, B. Min, K. Bae, Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of Ganoderma lucidum. Bioorg. Med. Chem. Lett. 21, 6603–6607 (2011)PubMedCrossRefGoogle Scholar
  52. 52.
    T. Xu, R.B. Beelman, The bioactive compounds in medicinal mushrooms have potential protective effects against neurodegenerative diseases. Adv. Food Technol. Nutr. Sci. 1, 62–66 (2015)CrossRefGoogle Scholar
  53. 53.
    N.C. Yang, H.C. Lin, J.H. Wu, H.C. Ou, Y.C. Chai, C.Y. Tseng, J.W. Liao, T.Y. Song, Ergothioneine protects against neuronal injury induced by β-amyloid in mice. Food Chem. Toxicol. 50, 3902–3911 (2012)PubMedCrossRefGoogle Scholar
  54. 54.
    A. Alimpić, A. Knežević, M. Milutinović, T. Stević, K. Šavikin, M. Stajić, S. Marković, P.D. Marin, V. Matevski, S. Duletić-Laušević, Biological activities and chemical composition of Salvia amplexicaulis Lam Extracts. Ind. Crop. Prod. 105, 1–9 (2017)CrossRefGoogle Scholar
  55. 55.
    C.C. Chien, M.L. Tsai, C.C. Chen, S.J. Chang, C.H. Tseng, Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 166, 117–120 (2008)CrossRefGoogle Scholar
  56. 56.
    T.S. Chang, An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10, 2440–2475 (2009)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”University of BelgradeBelgradeSerbia

Personalised recommendations