Advertisement

Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract

  • Enas M. Mekawi
  • Ashraf M. Sharoba
  • Mohamed Fawzy RamadanEmail author
Original Paper
  • 20 Downloads

Abstract

Lyophilized pomegranate peel nanoparticles extract (LPP-NPsE) is rich in bioactive compounds and could be applied as a natural antioxidant. This study evaluated the effect of using LPP-NPsE as an antioxidant on the oxidative stability of sunflower oil and reducing of acrylamide induction in potato chips during deep frying. LPP-NPsE was incorporated into sunflower oil (1000 mg/kg) while butylated hydroxytoluene (BHT, 200 mg/kg) and tocopherols (1000 mg/kg) were used as a positive control. Peroxide value (PV), total polar compounds (TPCs), free fatty acids (FFAs), and conjugated dienes and trienes were determined during frying to monitor oil stability. LPP-NPsE was effective and had the lowest PV, FFA, and TPC during frying. The acrylamide content was determined using HPLC coupled with a photo diode array detector. The initial value of acrylamide was low (192 mg/kg), while the highest acrylamide content was detected in control deep-fried potato chips (1674 mg/kg) after 20 frying cycles. The reduction (54%) in acrylamide content in potato chips was achieved after the addition of LPP-NPsE. LPP-NPsE could be favorably used as an antioxidant for acrylamide reduction in sunflower oil during deep frying.

Keywords

Punica granatum Oxidative stability Total polar compounds Fruit by-products Conjugated dienes Conjugated trienes 

Notes

Acknowledgements

Authors thank the Scientific Research Fund (Benha University, Egypt) for providing financial support to this Project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G. Boskou, F.N. Salta, A. Chiou, E. Troullidou, N.K. Andrikopoulos, Eur. J. Lipid Sci. Technol. 108, 109–115 (2006)Google Scholar
  2. 2.
    S. Urbancic, M. Kolar, D. Dimitrijevic, L. Demsar, R. Vidrih, LWT Food Sci. Technol. 57, 671–678 (2014)Google Scholar
  3. 3.
    M.F. Ramadan, J. Food Sci. Technol. 52(10), 6301–6311 (2015)Google Scholar
  4. 4.
    F.J. Hidalgo, R. Zamora, Ann. NY Acad. Sci. 1043, 319–326 (2005)Google Scholar
  5. 5.
    J. Velasco, S. Marmesat, M.C. Dobarganes, Chemistry of frying, in Deep fat frying of foods, ed. by S. Sahin, G. Sumnu (Taylor and Francis, Philadelphia, 2008), pp. 33–56Google Scholar
  6. 6.
    International Agency for Research on Cancer, IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 60 (IARC, Lyon, 1994), pp. 389–433Google Scholar
  7. 7.
    N.G. Halford, T.Y. Curtis, N. Muttucumaru, J. Postles, J.S. Elmore, D.S. Mottram, J. Exp. Bot. 63(8), 2841–2851 (2012)Google Scholar
  8. 8.
    D.P. Balagiannis, D.S. Mottram, J. Higley, G. Smith, B.L. Wedzichac, J.K. Parker, Kinetic modeling of acrylamide formation during the finish-frying of French fries with variable maltose content. Food Chem. 284, 236–244 (2019)Google Scholar
  9. 9.
    Commission Regulation (EU) 2017/2158 of November 2017 (2017) Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official Journal of European Union L304/24Google Scholar
  10. 10.
    Eriksson S (2005) Acrylamide in food products identification, formation, and analytical methodology. PhD Thesis. Department of Environmental Chemistry, Stockholm University, StockholmGoogle Scholar
  11. 11.
    Y. Elhassaneen, R.S. Sayed, Int. J. Nutr. Food Sci. 4(4), 493–502 (2015)Google Scholar
  12. 12.
    C. Dobarganes, G. Márquez-Ruiz, J. Velasco, Eur. J. Lipid Sci. Technol. 102(8–9), 521–528 (2000)Google Scholar
  13. 13.
    Y. Karademir, V. Gökmen, H.M. Öztop, Food Res. Int. 121, 919–925 (2019)Google Scholar
  14. 14.
    C. Jin, X. Wu, Y. Zhang, Food Res. Int. 51, 611–620 (2013)Google Scholar
  15. 15.
    F. Zhu, Y.Z. Cai, J. Ke, H. Corke, J. Sci. Food Agric. 89, 1674–1681 (2009)Google Scholar
  16. 16.
    K.W. Cheng, J.J. Shi, S.Y. Ou, M.F. Wang, Y. Jiang, J. Agric. Food Chem. 58(1), 309–312 (2010)Google Scholar
  17. 17.
    N. Kahkeshani, S. Saeidnia, M. Abdollahi, J. Food Sci. Technol. 52(6), 3169–3186 (2015)Google Scholar
  18. 18.
    P. Mariana-Atena, J. Mol. Sci. 13, 9240–9259 (2012)Google Scholar
  19. 19.
    R. Tabaraki, E. Heidarizadi, A. Benvidi, Sep. Purif. Technol. 98, 16–23 (2012)Google Scholar
  20. 20.
    S. Bashir, G. Rasool, M. Atif, M. Sharif, S. Gillani, F. Shah, A. Khan, S. Ullah, Pak. J. Food Sci. 26(4), 218–225 (2016)Google Scholar
  21. 21.
    El-Hadary AE, Ramadan MF (2019) J. Food Biochem. https://doi.org/10.1111/jfbc.12803
  22. 22.
    V. Okatan, A.M. Çolak, S.F. Güçlü, M. Gündoğdu, Acta Sci. Pol. Hortorum Cultus 17(4), 201–211 (2018)Google Scholar
  23. 23.
    N. Korkmaz, M. Aşkın, Int. J. Agric. Life Sci. 1(1), 27–51 (2017)Google Scholar
  24. 24.
    M. Aviram, L. Dornfeld, M. Rosenblat, N. Volkova, M. Kaplan, R. Coleman, T. Hayek, D. Presser, B. Fuhrman, Am. J. Clin. Nutr. 71, 1062–1076 (2000)Google Scholar
  25. 25.
    P.S. Negi, G.K. Jayaprakasha, B.S. Jena, Food Chem. 80, 393–397 (2003)Google Scholar
  26. 26.
    K. Osman, Y. Pınar, U. İlknur, G. Bahar, A. Hanife, G. Nalan, J. Food Sci. Technol. 52(1), 625–632 (2015)Google Scholar
  27. 27.
    A. El-Anany, Electron. J. Food Plants Chem. 2, 14–19 (2007)Google Scholar
  28. 28.
    M. Morsy, E. Mekawi, R. Elsabagh, Food Sci. Technol. 89, 489–495 (2018)Google Scholar
  29. 29.
    T. Singh, S. Shukla, P. Kumar, V. Wahla, V. Bajpai, I. Rather, Front. Microbiol. 8, 1501 (2017)Google Scholar
  30. 30.
    A. Esfanjania, S. Jafari, Colloids Surf. B 146, 532–543 (2016)Google Scholar
  31. 31.
    M. Balooch, H. Sabahi, H. Aminian, M. Hosseini, LWT Food Sci. Technol. 98, 99–105 (2018)Google Scholar
  32. 32.
    A. Khataee, S. Fathinia, M. Fathinia, Ultrason. Sonochem. 34, 904–915 (2017)Google Scholar
  33. 33.
    M. Khalil, M. Khan, M. Shabbir, K. Rahman, J. Anim. Plant Sci. 27(2), 522–527 (2017)Google Scholar
  34. 34.
    S. Bastida, F.J. Sánchez-Muniz, J. Am. Oil Chem. Soc. 79(5), 447–451 (2002)Google Scholar
  35. 35.
    T.N. Wai, Int. e-J. Sci. Med. Educ. 2, 2–7 (2007)Google Scholar
  36. 36.
    AOCS (2003) In: Firestone D (ed) Official Methods and Recommended Practices of the American Oil Chemists Society. AOCS, ChampaignGoogle Scholar
  37. 37.
    R. Kim, F. Labella, J. Lipid Res. 28, 1110–1117 (1987)Google Scholar
  38. 38.
    IUPAC Standard Method 2.507 (1987) In: Gold V (ed) Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th edn. IUPAC Press, Blackwell, OxfordGoogle Scholar
  39. 39.
    H. Wang, A. Lee, S. Shuang, M. Choi, Microchem. J. 89, 90–97 (2008)Google Scholar
  40. 40.
    F. Khoshnama, B. Zargarb, N. Pourrezab, H. Parhamb, J. Iran. Chem. Soc. 7(4), 853–858 (2010)Google Scholar
  41. 41.
    Steel RGD, Torrie JH (1980) In: Steel RGD, Torrie JH (eds) Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New YorkGoogle Scholar
  42. 42.
    U. Pal, R. Patra, N. Sahoo, C. Bakhara, M. Panda, J. Food Sci. Technol. 52(7), 4613–4618 (2015)Google Scholar
  43. 43.
    T.M.A. Suliman, J. Jiang, Y. Liu, Int. J. Eng. Sci. Technol. 5(2), 449–454 (2013)Google Scholar
  44. 44.
    K. Warner, M. Eskin, Methods to Access Quality and Stability of Oils and Fat-Containing Foods (AOCS Press, Champaign, 1995)Google Scholar
  45. 45.
    H. Abramovi, V. Abram, Food Technol. Biotechnol. 43, 63–70 (2005)Google Scholar
  46. 46.
    M. Poiana, Int. J. Mol. Sci. 13, 9240–9259 (2012)Google Scholar
  47. 47.
    O. Topuz, P. Yerlikaya, İ. Uçak, B. Gümüş, H. Büyükbenli, N. Gökoğlu, J. Food Sci. Technol. 52(1), 625–632 (2015)Google Scholar
  48. 48.
    D. Bopitiya, T. Madhujith, Trop. Agric. Res. 25(3), 298–306 (2014)Google Scholar
  49. 49.
    L. Lascaray, Ind. Eng. Chem. 41, 786–790 (1949)Google Scholar
  50. 50.
    A. Andres, A. Arguelles, M.L. Castello, A. Heredia, Food Bioprocess. Technol. 6, 1917–1924 (2013)Google Scholar
  51. 51.
    M.E. Mekawi, Int. J. Sci. Res. 4(10), 102–105 (2015)Google Scholar
  52. 52.
    U. Kalapathy, A. Proctor, J. Am. Oil Chem. Soc. 77, 593–598 (2000)Google Scholar
  53. 53.
    D. Izbaim, B. Faiz, A. Moudden, N. Taifi, I. Aboudaoud, Grasas Aceites 61(2), 151–156 (2010)Google Scholar
  54. 54.
    S. Paul, G.S. Mittal, Crit. Rev. Food Sci. Nutr. 37, 635–662 (1997)Google Scholar
  55. 55.
    E. Tabee, M. Jägerstad, P.C. Dutta, J. Am. Oil Chem. Soc. 86, 885–893 (2009)Google Scholar
  56. 56.
    A. Hopia, Lebensm.-Wiss. Technol. 26, 563–567 (1993)Google Scholar
  57. 57.
    R. Upadhyay, S. Sehwag, H. Mishr, Food Sci. Technol. 78, 332–339 (2017)Google Scholar
  58. 58.
    E. Choe, D.B. Min, J. Food Sci. 72, 77–86 (2007).  https://doi.org/10.1111/j.1750-3841.2007.00352.x Google Scholar
  59. 59.
    R.J. Hamilton, in The Chemistry of Rancidity Food in Rancidity in Foods 1, ed. by J.C. Allen, R.J. Hamilton (Food Contamination-Congress. Applied Science Publisher Ltd, London, 1983), pp. 1–20Google Scholar
  60. 60.
    J. Dostálová, P. Hanzlik, Z. Reblova, J. Pokorney, Czech J. Food Sci. 23, 230–239 (2005)Google Scholar
  61. 61.
    Y.B. Che Man, J.L. Liu, B. Jamilah, R.A. Rahman, J. Food Lipids 6, 181–193 (1999)Google Scholar
  62. 62.
    G. Kalantzakis, G. Blekas, Eur. J. Lipid Sci. Technol. 108, 842–847 (2006)Google Scholar
  63. 63.
    D.S. Mottram, B.L. Wedzicha, A.T. Dodson, Nature 419, 448–449 (2002)Google Scholar
  64. 64.
    E. Tareke, P. Rydberg, P. Karlsson, S. Eriksson, M. Tornqvist, J. Agric. Food Chem. 50(17), 4998–5006 (2002)Google Scholar
  65. 65.
    M.S. Shiban, M.M. Al-Otaibi, N.S. Al-Zoreky, Food Nutr. Sci. 3, 991–996 (2012)Google Scholar
  66. 66.
    O. Orgil, E. Schwartz, L. Baruch, I. Matityahu, J. Mahajna, R. Amir, LWT Food Sci. Technol. 58, 571–577 (2014)Google Scholar
  67. 67.
    A. Becalski, B.P.Y. Lau, D. Lewis, S.W. Seaman, J. Agric. Food Chem. 51, 802–808 (2003)Google Scholar
  68. 68.
    Y. Zhang, Y. Zhang, J. Food Eng. 85(1), 105–115 (2008)Google Scholar
  69. 69.
    Y. Chuda, H. Ono, H. Yada, A. Ohara-Takada, C. Matsuura-Endo, M. Mori, Biosci. Biotechnol. Biochem. 67, 1188–1190 (2003)Google Scholar
  70. 70.
    E. Capuano, T. Oliviero, Ö.Ç. Açar, V. Gökmen, V. Fogliano, Food Res. Int. 43, 1021–1026 (2010)Google Scholar
  71. 71.
    R. Zamora, F.J. Hidalgo, J. Agric. Food Chem. 56, 6075–6080 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Agricultural Biochemistry Department, Faculty of AgricultureBenha UniversityBenhaEgypt
  2. 2.Department of Food Technology, Faculty of AgricultureBenha UniversityBenhaEgypt
  3. 3.Agricultural Biochemistry Department, Faculty of AgricultureZagazig UniversityZagazigEgypt

Personalised recommendations