Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3198–3205 | Cite as

Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods

  • Qingying Dong
  • Dujuan He
  • Xudong Ni
  • Huabin ZhouEmail author
  • Hailong YangEmail author
Original Paper


Ganoderma lucidum, a famous Chinese medicinal mushroom, is cultivated systematically, harvested seasonally and dried for preservation. In this study, the effects of sun drying, hot air drying at 50 °C and 70 °C, microwave drying at 420 W and 700 W, and freeze drying on the moisture content, rehydration capacity, the contents of total phenolics, flavonoids and triterpenoids, as well as on the antioxidant activity of G. lucidum were investigated. The results showed that the physical properties, bioactive ingredients and antioxidant activity of G. lucidum were significantly affected by the different drying techniques. Microwave drying at 700 W resulted in the lowest moisture content, whereas freeze drying resulted in the highest rehydration rate compared with the other drying methods. The content of total phenolics and flavonoids, the 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability, and the ferric reducing antioxidant power were found to be the highest at the G. lucidum dried by microwave drying at 700 W. Overall, Microwave drying was of short duration and significantly retained the antioxidant activity and high content of phenolics in G. lucidum. Thus, Microwave drying could be suggested as the optimal method for preserving the fruiting body of G. lucidum.


Ganoderma lucidum Drying methods Phenolic compounds Triterpenoids Antioxidant activity 



This study was supported by the National Natural Science Foundation of China (Grant No. 31571900) and Zhejiang Department of Science and Technology (Project No. 2018C02005), China.


  1. 1.
    S.A. Heleno, L. Barros, A. Martins, M.J.R.P. Queiroz, C. Santos-Buelga, I.C.F.R. Ferreira, Food Res. Int. 46, 135–140 (2012)Google Scholar
  2. 2.
    H.B. Zhou, P.Y. Bi, X.T. Wu, F.R. Huang, H.L. Yang: Appl. Biochem. Biotechnol. 172, 1497–1505 (2014).PubMedGoogle Scholar
  3. 3.
    V.T. Nguyen, N.T. Tung, T.D. Cuong, T.M. Hung, J.A. Kim, M.H. Woo, J.S. Choi, J.H. Lee, B.S. Min, Phytochem. Lett. 12, 69–74 (2015)Google Scholar
  4. 4.
    C. Xiao, Q. Wu, J. Zhang, Y. Xie, W. Cai, J. Tan, J. Ethnopharmacol. 196, 47–57 (2017)PubMedGoogle Scholar
  5. 5.
    C.W. Ma, M. Fen, X. Zhai, M. Hu, L. You, W. Luo, M. Zhao, J. Taiwan Inst. Chem. Eng. 44, 886–894 (2013)Google Scholar
  6. 6.
    B. Boh, M. Berovic, J. Zhang, L. Zhi-bin, Biotechnol. Ann. Rev. 13, 265–301 (2007)Google Scholar
  7. 7.
    K.S. Bishop, C.H.J. Kao, Y. Xu, M.P. Glucina, R.R.M. Paterson, L.R. Ferguson, Phytochemistry 114, 56–65 (2015)PubMedPubMedCentralGoogle Scholar
  8. 8.
    J. Li, J. Zhang, H. Chen, X.Q. Chen, L. Lan, C. Liu, PLoS ONE 8, e72038 (2013)PubMedPubMedCentralGoogle Scholar
  9. 9.
    Y.Y. Lim, J. Murtijaya, LWT-Food Sci. Technol. 40, 1664–1669 (2007)Google Scholar
  10. 10.
    S.T. Dinani, M. Havet, Ind. Crops Prod. 70, 417–426 (2015)Google Scholar
  11. 11.
    H.D. Yang, Z.C. Wu, D.J. He, H.B. Zhou, H.L. Yang, J. Polym. Environ. 25, 1033–1042 (2017)Google Scholar
  12. 12.
    M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Anal. Chem. 28, 350–356 (1956)Google Scholar
  13. 13.
    S. Sudheer, W.K. Yeoh, S. Manickam, A. Ali, Postharvest Biol. Technol. 117, 81–88 (2016)Google Scholar
  14. 14.
    M. Ramakrishna, D.R. Babu, S.S. Veena, M. Pandey, G.N. Rao, Int. J. Med. Mushrooms 19, 457–465 (2017)PubMedGoogle Scholar
  15. 15.
    V.L. Sigleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 152–178 (1999)Google Scholar
  16. 16.
    J. Bao, Y. Cai, M. Sun, G. Wang, H. Corke, J. Agric. Food Chem. 53, 2327–2332 (2005)PubMedGoogle Scholar
  17. 17.
    G. Zengin, C. Sarikurkcu, E. Gunes, A. Uysal, R. Ceylan, S. Uysal, H. Gungord, A. Aktumsek, Food Funct. 6, 2794 (2015)PubMedGoogle Scholar
  18. 18.
    Y.Y. Li, H.D. Yang, H.L. Yang, J. Wang, H.J. Chen, J. Food Meas. Charact. 13, 513–520 (2019)Google Scholar
  19. 19.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)Google Scholar
  20. 20.
    G. Cuccurullo, L. Giordano, A. Metallo, L. Cinquanta, Biosyst. Eng. 158, 95–101 (2017)Google Scholar
  21. 21.
    A. Vega-Gálvez, K. Di Scala, K. Rodríguez, R. Lemus-Mondaca, M. Miranda, J. López, M. Perez-Won, Food Chem. 117, 647–653 (2009)Google Scholar
  22. 22.
    D.B. Jadhav, G.L. Visavale, N. Sutar, U.S. Annapure, B.N. Thorat, Drying Technol. 28, 600–607 (2010)Google Scholar
  23. 23.
    R.Ş. Çakmak, O. Tekeoğlu, H. Bozkır, A.R. Ergün, T. Baysal, LWT Food Sci. Technol. 69, 197–202 (2016)Google Scholar
  24. 24.
    N. Zhang, H. Chen, Y. Zhang, L. Ma, X. Xu, J. Sci. Food Agric. 93, 3107–3113 (2013)PubMedGoogle Scholar
  25. 25.
    M. Miranda, H. Maureira, K. Rodríguez, A. Vega-Gálvez, J. Food Eng. 91, 297–304 (2009)Google Scholar
  26. 26.
    T. Nakagawa, Q. Zhu, S. Tamrakar, Y. Amen, Y. Mori, H. Suhara, S. Kaneko, H. Kawashima, K. Okuzono, Y. Inoue, K. Ohnuki, K. Shimizu, J. Nat. Med. 72, 734–744 (2018)PubMedGoogle Scholar
  27. 27.
    M. Kim, P. Seguin, J.K. Ahn, J.J. Kim, S.C. Chun, E.H. Kim, S.H. Seo, E.Y. Kang, S.L. Kim, Y.J. Park, H.M. Ro, I.M. Chung, J. Agric. Food Chem. 56, 7265–7270 (2008)PubMedGoogle Scholar
  28. 28.
    K. An, D. Zhao, Z. Wang, J. Wu, Y. Xu, G. Xiao, Food Chem. 197, 1292–1300 (2016)PubMedGoogle Scholar
  29. 29.
    G. Zhao, R. Zhang, L. Liu, Y. Deng, Z. Wei, Y. Zhang, Y. Ma, M. Zhang, LWT Food Sci. Technol. 79, 260–266 (2017)Google Scholar
  30. 30.
    Z. Zhang, G. Lv, H. Pan, Y. Wu, L. Fan, Food Sci. Technol. Res. 15, 547–552 (2009)Google Scholar
  31. 31.
    J. Samoticha, A. Wojdyło, K. Lech, LWT Food Sci. Technol. 66, 484–489 (2016)Google Scholar
  32. 32.
    N. Izli, G. Izli, N. Taskin, Food Measure 11, 64–74 (2017)Google Scholar
  33. 33.
    X. Si, Q. Chen, J. Bi, X. Wu, J. Yi, L. Zhou, Z. Li, J. Sci. Food Agric. 96, 2055–2062 (2016)PubMedGoogle Scholar
  34. 34.
    C.H. Chang, H.Y. Lin, C.Y. Chang, Y.C. Liu, J. Food Eng. 77, 478–485 (2006)Google Scholar
  35. 35.
    I. Hamrouni-Sellami, F.Z. Rahali, I.B. Rebey, S. Bourgou, F. Limam, B. Marzouk, Food Bioprocess Technol. 6, 806–817 (2013)Google Scholar
  36. 36.
    I.R. Kubra, L.J.M. Rao, Int. J. Food Sci. Technol. 47, 2311–2317 (2012)Google Scholar
  37. 37.
    M.K. Mohd Zainol, A. Abdul-Hamid, F. Abu Bakar, S. Pak Dek, Int. Food Res. J. 16, 531–537 (2009)Google Scholar
  38. 38.
    R. Tabaraki, A. Nateghi, Ultrason. Sonochem. 18, 1279–1286 (2011)PubMedGoogle Scholar
  39. 39.
    G. Izli, Food Sci. Technol. (Campinas) 37, 139–147 (2017)Google Scholar
  40. 40.
    R.K. Toor, G.P. Savage, Food Chem. 94, 90–97 (2006)Google Scholar
  41. 41.
    R. Saltarelli, P. Ceccaroli, M. Iotti, A. Zambonelli, M. Buffalini, L. Casadei, L. Vallorani, V. Stocchi, Food Chem. 116, 143–151 (2009)Google Scholar
  42. 42.
    J. Yang, J.F. Chen, Y.Y. Zhao, L.C. Mao, Agric. Sci. China 9, 1522–1529 (2010)Google Scholar
  43. 43.
    S. Pu, J. Li, L. Sun, L. Zhong, Q. Ma, Carbohyd. Polym. 211, 161–172 (2019)Google Scholar
  44. 44.
    T.P. Smina, J. Mathew, K.K. Janardhanan, T.P.A. Devasagayam, Environ. Toxicol. Phar. 32, 438–446 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life & Environmental ScienceWenzhou UniversityWenzhouChina

Personalised recommendations