Effect of different edible coatings on biochemical quality and shelf life of apricots (Prunus armenica L. cv Canino)

  • Noha E. Morsy
  • Ahmed M. RayanEmail author
Original Paper


As apricots have limited marketability due to their high degree of perishability that usually leads to extensive postharvest losses, this study determined the effect of different edible coatings on the quality, enzyme activity and shelf life of apricots. Apricots were dipped in different solutions of alginate, chitosan or gellan gum then stored at 4 °C and 80% ± 2% relative humidity for 15 days. Uncoated fruits were similarly stored as controls. Results revealed that the application of edible coatings reduced a range of degradative changes in the fruits. There were significant differences in a number of biochemical characteristics [pH, titratable acidity (TA), total soluble solids (TSS) and vitamin C], external color, carotenoids, weight loss and firmness when treated samples were compared to control samples. All coatings were effective in inhibiting oxidative enzymes, with significant reductions observed in peroxidase (POD) and polyphenol oxidase (PPO) activities. Specifically, alginate (AL) 1%, chitosan (CH) 1% and gellan gum (GE) 1% demonstrated superiority in inhibiting enzyme activity. Therefore, coating apricots with alginate, chitosan and gellan gum can be considered a useful strategy for minimizing deterioration, maintaining quality and improving the shelf life of apricots under the storage temperature of 4 °C.


Apricots Edible coatings Shelf life Biochemical characteristics Enzyme activity 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    M.I. Egea, M.C. Martinez-Madrid, P. Sanchez-Bel, M.A. Muricia, F. Romojaro, The influence of electron-beamionization on ethylene metabolism and quality parameter in apricot (Prunus armeniaca L. cv Builda). Swiss Soc. Food Sci. Technol. 40, 1027–1035 (2007)Google Scholar
  2. 2.
    O. E. Campbell, I. A. Merwin, O. I. Padilla-Zakour, O. I., Nutritional quality of New York peaches and apricots. N Y Fruit Q. 19, 12–16 (2011)Google Scholar
  3. 3.
    H.A.E.F.M. Ali, Effect of coatings materials on shelf-life of cold strawberry and apricot. Ph.D Theses. Cairo University, Cairo, Egypt (2015)Google Scholar
  4. 4.
    G. Giacalone, V. Chiabrando, Postharvest quality of apricot cultivars in relation to storage period: preliminary results. La Rivista Di Scienza Dell'alimentazione. 3, 39–44 (2010)Google Scholar
  5. 5.
    H. Valdes, M. Pizarro, R. Campos-Vargas, R. Infante, B.G. Defilippi, Effect of ethylene inhibitors on quality attributes of apricot cv Modesto and Patterson during storage. Chil. J. Agric. Res. 69, 134–144 (2009)CrossRefGoogle Scholar
  6. 6.
    A.S.H. Atress, M.M. El-Mogy, H.E. Aboul-Anean, B.W. Alsaniu, Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. J. Hortic. Sci. Ornam. Plants. 2, 88–97 (2010)Google Scholar
  7. 7.
    N.B. Gol, M.L. Chaudhari, T.R. Rao, Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L) fruit during storage. J. Food Sci. Technol. 52, 78–91 (2013)CrossRefGoogle Scholar
  8. 8.
    J.P. Falguera, A. Quintero, J.A. Jiménez, A.I. Muñoz, Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol. 22, 292–303 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Benítez, I. Achaerandio, M. Pujolà, F. Sepulcre, Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: a case of study with kiwifruit slices. LWT-Food Sci. Technol. 61, 184–193 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Carrión-Granda, I. Fernández-Pan, J. Rovira, J.I. Maté, Effect of antimicrobial edible coatings and modified atmosphere packaging on the microbiological quality of cold stored hake (Merluccius merluccius) Fillets. J. Food Qual. 25, 256 (2018). Google Scholar
  11. 11.
    L. Zhang, F. Chena, S. Laia, H. Wanga, H. Yangc, Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT - Food Sci. Technol. 96, 604–611 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Hosseinnejad, S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85, 467–475 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Jooyandeh, Whey protein films and coatings: a review. Pak. J. Nutr. 10, 296–301 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Sivarooban, N.S. Hettiarachchy, M.G. Johnson, Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 41, 781–785 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Song, L. Liu, H. Shen, J. You, Y. Luo, Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 22, 608–615 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Regalado, C. Pérez-Pérez, E. Lara-Cortés, B. Garcia-Almendarez, Whey protein based edible food packaging films and coatings. Agric. Food Biotechnol. 2006, 237–261 (2006)Google Scholar
  17. 17.
    S. Pizato, W. R. Cortez-Vega, J. T. A. de Souza, C. Prentice-Hernandez, C. D. Borges, Effects of different edible coatings in physical, chemical and microbiological charactersitics of minimally processed peaches (Prunus persica L. Batsch), J. Food Saf. 33, 30–39 (2013)CrossRefGoogle Scholar
  18. 18.
    A.O.A.C., Official methods of analysis, 16th edn. Association of Official Analytical Chemists, (AOAC, Washington DC, 2000)Google Scholar
  19. 19.
    D.V. Wettestein, Chlorophyll-ltale und der submikro skopische from weckses der plastiden. Exp. Cell Res. 12, 427–433 (1957)CrossRefGoogle Scholar
  20. 20.
    M. Ghasemnezhad, M.A. Shiri, M. Sanavi, Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Casp. J. Environ. Sci. 8, 25–33 (2010)Google Scholar
  21. 21.
    A. Yemenicioglu, M. Ozkan, B. Cemeroglu, Heat inactivation kinetics of apple polyphenoloxidase and of its latent form. J. Food Sci. 62, 508–510 (1997)CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, X. Pang, D. Xuewu, Z. Ji, Y. Jiang, Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem. 90, 47–52 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Oktay, I. Kufreviolglu, I. Kocacalipkan, H. Pakiroglu, Polyphenoloxidase from Amasya apple. J. Food Sci. 60, 494–496 (1995)CrossRefGoogle Scholar
  24. 24.
    S. Ali, T. Masud, K.S. Abbasi, A. Ahmad, T. Mahmood, A. Ali, Biochemical attributes of apricot as influenced by salicylic acid during ambient storage. Int. J. Biosci. 4, 176–187 (2014)Google Scholar
  25. 25.
    D.R. Bhattarai, D.M. Gautam, Effect of harvesting method and calcium on postharvest physiology of tomato. Nepal Agric. Res. J. 7, 37–41 (2006)CrossRefGoogle Scholar
  26. 26.
    N. Maftoonzad, H.S. Ramaswamy, M. Marcotte, Shelf-life extension of peaches through sodium alginate and methyl cellulose edible coatings. Int. J. Food Sci. Technol. 43, 951–957 (2008)CrossRefGoogle Scholar
  27. 27.
    D. Valero, M. Serrano, Postharvest biology and technology for preserving fruit quality (CRC-Taylor & Francis, Boca Raton, 2010)CrossRefGoogle Scholar
  28. 28.
    O. Yaman, L. Bayoindirli, Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food Sci. Technol. 35, 146–150 (2002)CrossRefGoogle Scholar
  29. 29.
    H.E.M. El-Badawy, F.T.A. El-Salhy, Physical and chemical properties of Canino apricot fruits during cold storage as influenced by some post-harvest treatments. Aust. J. Basic Appl. Sci. 5, 537–548 (2011)Google Scholar
  30. 30.
    S.K. Lee, A.A. Kader, Preharvest and postharvest factors influencing vitamin Ccontent of horticultural crops. Postharvest Biol. Technol. 20, 207–220 (2000)CrossRefGoogle Scholar
  31. 31.
    H.M.A.B. Cardello, L. Cardello, Vitamin C., ascorbate oxidase activity and sensory profile of mango (Mangifera indica, L) var. Haden during ripening. Cienciae Tecnologia de Alimentos. 18, 211–217 (1998).CrossRefGoogle Scholar
  32. 32.
    P. Hernandez-Munoz, E. Almenar, V. Del Valle, D. Velez, R. Gavara, Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria ananassa) quality during refrigerated storage. Food Chem. 110, 428–435 (2008)CrossRefGoogle Scholar
  33. 33.
    C. Bawana, Efficacy of chitosan as transparent edible coating in extending the shelf life of fresh-cut peaches. MSc Thesis. California State University, Fresno, USA (2010)Google Scholar
  34. 34.
    M.A. Rojas-Grau, R.M. Raybaudi-Massilia, R.C. Soliva-Fortuny, R.J. Avena-Busttillos, T.H. Mchugh, O. Martin-Belloso, Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Technol. 45, 254–264 (2007)CrossRefGoogle Scholar
  35. 35.
    G.A. Gonzalez-Aguilar, E. Valenzuela-Soto, J. Lizardi-Mendoza, F. Goycoolea, M.A. Martinez-Tellez, M.A. Villegas-Ochoa, I.N. Monroy-Garcia, J.F. Ayala-Zavala, Effect of chitosan coating in preventing deterioration and preserving the quality of fresh-cut papaya ‘Maradol’. J. Sci. Food Agric. 89, 15–23 (2009)CrossRefGoogle Scholar
  36. 36.
    M. Maqbool, A. Ali, P.G. Alderson, N. Zahid, Y. Siddiqui, Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruit during cold storage. J. Agric. Food Chem. 59, 5474–5482 (2011)CrossRefGoogle Scholar
  37. 37.
    D. De Rigal, F. Gauillard, F. Richard-Forget, Changes in the carotenoid content of apricot (Prunus armeniaca var Bergeron) during enzymatic browning: β-carotene inhibition of chlorogenic acid degradation. J. Sci. Food Agric. 80, 763–768 (2000)CrossRefGoogle Scholar
  38. 38.
    A.M. Cavaco, P. Pinto, M.D. Antunes, J.M. Silva, R. Guerra, “Rocha” pear firmness predicted by a Vis/NIR segmented model. Postharvest Biol. Technol. 51, 311–319 (2009)CrossRefGoogle Scholar
  39. 39.
    H.M. Díaz-Mula, M. Serrano, D. Valero, Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess Technol. 5, 2990–2997 (2012)CrossRefGoogle Scholar
  40. 40.
    M.C. Reyes-Avalos, A. Femenia, R. Minjares-Fuentes, J.C. Contreras-Esquivel, C.N. Aguilar-González, J.R. Esparza-Rivera, J.A. Meza-Velázquez, Improvement of the quality and the shelf life of figs (Ficus carica) using an alginate–chitosan edible film. Food Bioprocess Technol. 9, 2114–2124 (2016)CrossRefGoogle Scholar
  41. 41.
    M.D.C. Antunes, S. Dandlen, A.M. Cavaco, G. Miguel, Effects of postharvest application of 1-MCP and post cutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. J. Agric. Food Chem. 58, 6173–6181 (2010)CrossRefGoogle Scholar
  42. 42.
    D. Valero, H.M. Díaz-Mula, P.J. Zapata, F. Guillen, D. Martínez-Romero, S. Castillo, Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 77, 1–6 (2013)CrossRefGoogle Scholar
  43. 43.
    B. Dincer, A. Colak, N. Aydin, A. Kadioglu, S. Guner, Characterization of polyphenoloxidase from Medlar fruits. Food Chem. 77, 1–7 (2002)CrossRefGoogle Scholar
  44. 44.
    H.A.A. Eissa, Effect of chitosan coating on shelf-life and quality of fresh-cut mushroom. Polish Food Nutr. Sci. 58, 95–105 (2008)Google Scholar
  45. 45.
    M. Ghasemnezhad, S. Zareh, M. Rassab, R.H. Sajedi, Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. J. Sci. Food Agri. 93, 368–374 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science & Technology (Home Economics Branch), Faculty of AgricultureSuez Canal UniversityIsmailiaEgypt
  2. 2.Department of Food Technology, Faculty of AgricultureSuez Canal UniversityIsmailiaEgypt

Personalised recommendations