Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3140–3148 | Cite as

The impact of power ultrasound application on physicochemical, antioxidant, and microbiological properties of fresh orange and celery juice blend

  • Daniela Ruiz-De Anda
  • María Guadalupe Ventura-Lara
  • Gabriela Rodríguez-Hernández
  • César OzunaEmail author
Original Paper
  • 6 Downloads

Abstract

The aim of this work was to study the effect of power ultrasound (PUS) application on physicochemical, antioxidant, and microbiological properties of a juice blend from oranges and celery stalks. Juice samples were sonicated in an ultrasonic bath (20 kHz, 5.57 ± 0.87 kW/m3, 20 ± 5 °C) at different sonication times (0, 15, 30, 45, 60, 75, and 90 min). Samples were stored in the dark for 24 h at 4 °C and subsequently analyzed. Significant (p < 0.05) positive effects of PUS treatment on bioactive, antioxidant, and microbiological properties of the treated juice blend were observed even after the shortest sonication time (t = 15 min), with best results being obtained for 45 min PUS treatment (13% increase in total phenols to 280.35 ± 4.51 mg GAE/100 mL; twofold increase in total flavonoids to 3.16 ± 0.11 mg EQ/100 mL; 17% increase in antioxidant activity to 24.46 ± 0.02 mg TE/100 mL). Importantly, ascorbic acid content (37.78 ± 7.24 mg AA/100 mL) and some important physicochemical properties of the juice (total soluble solids, pH, titratable acidity) were unaffected by PUS. However, PUS-induced changes in color attributes were strongly correlated (|r| > 0.60; p < 0.001) with an increase in bioactive compound content and antioxidant activity. Also, the 53% increase in cloud value (1.70 ± 0.03) points to an increased stability of the PUS-treated juice blend. Therefore, ultrasonic treatment could represent a viable non-thermal technology for microbial inactivation in fresh orange and celery juice blend while increasing its stability and preserving its bioactive properties and quality attributes.

Keywords

Non-thermal technologies Power ultrasound technology Quality Polyphenols Flavonoids Antioxidant activity 

Notes

Acknowledgements

The authors acknowledge the financial support of SICES, Guanajuato, Mexico (Programa Incentivos a la Investigación y Desarrollo Tecnológico, Modalidad Apoyo Jóvenes Investigadores, Convenio 138/2016 UG). The authors would also like to thank Stanislav Mulík, MA (Applied Linguistics), for his valuable contribution in writing the English version of this paper.

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. 1.
    V. Rizzo, G. Muratore, J. Food Eng. 90(1), 124–128 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Zvaigzne, D. Kārkliņa, Proc. Latv. Acad. Sci. Sect. B 67(4–5), 329–333 (2013)Google Scholar
  3. 3.
    A. Al-Howiriny, S. Alsheikh, M. Alqasoumi, K. Al-Yahya, S. ElTahir, Rafatullah. Pharm. Biol. 48(7), 786–793 (2010)PubMedCrossRefGoogle Scholar
  4. 4.
    O. Kahraman, H. Lee, W. Zhang, H. Feng, Ultrason. Sonochem. 38, 820–828 (2017)PubMedCrossRefGoogle Scholar
  5. 5.
    Z.-H. Zhang, L.-H. Wang, X.-A. Zeng, Z. Han, C.S. Brennan, Int. J. Food Sci. Technol. 54(1), 1–13 (2019)CrossRefGoogle Scholar
  6. 6.
    A. Rawson, B.K. Tiwari, M.G. Tuohy, C.P. O’Donnell, N. Brunton, Ultrason. Sonochem. 18(5), 1172–1179 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    K.R. Aneja, R. Dhiman, N.K. Aggarwal, A. Aneja, Int. J. Microbiol. 2014, 1–15 (2014)CrossRefGoogle Scholar
  8. 8.
    H.V. Rupasinghe, L.J. Yu, in Emerging preservation methods for fruit juices and beverages, in Food Additive, ed. by Y. El-Samragy (InTech, Rijeka, 2012), pp. 65–82Google Scholar
  9. 9.
    I. Paniagua-Martínez, A. Ramírez-Martínez, V. Serment-Moreno, S. Rodrigues, C. Ozuna, Food Bioprocess Technol. 11(3), 487–510 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Xue, J. Li, W. Yu, X. Lu, X. Kou, Food Sci. Technol. Int. 22(5), 440–458 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Chemat, N. Rombaut, A.-G. Sicaire, A. Meullemiestre, A.-S. Fabiano-Tixier, M. Abert-Vian, Ultrason. Sonochem. 34, 540–560 (2017)PubMedCrossRefGoogle Scholar
  12. 12.
    C. Ozuna, I. Paniagua-Martínez, E. Castaño-Tostado, L. Ozimek, S.L. Amaya-Llano, Food Res. Int. 77, 685–696 (2015)CrossRefGoogle Scholar
  13. 13.
    A.C. Soria, M. Corzo-Martínez, A. Montilla, E. Riera, J. Gamboa-Santos, M. Villamiel, J. Agric. Food Chem. 58(13), 7715–7722 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    M. D. Luque de Castro, F. Priego Capote, Analytical applications of ultrasound, 1st edn. (Elsevier, Boston, 2007).Google Scholar
  15. 15.
    J.A. Cárcel, J.V. García-Pérez, J. Benedito, A. Mulet, J. Food Eng. 110(2), 200–207 (2012)CrossRefGoogle Scholar
  16. 16.
    T. S. H. Leong, G. J. O. Martin, M. Ashokkumar (2018) Alternatives to Conventional Food Processing. In: A. Proctor (eds) The Royal Society of Chemistry: Cambridge, pp. 316–354.Google Scholar
  17. 17.
    S.H.M.C. Monteiro et al., Ultrason. Sonochem. 42, 1–10 (2018)PubMedCrossRefGoogle Scholar
  18. 18.
    L.H. Cheng, C.Y. Soh, S.C. Liew, F.F. Teh, Food Chem. 104(4), 1396–1401 (2007)CrossRefGoogle Scholar
  19. 19.
    L.E. Ordóñez-Santos, J. Martínez-Girón, M.E. Arias-Jaramillo, Food Chem. 233, 96–100 (2017)PubMedCrossRefGoogle Scholar
  20. 20.
    R. Bhat, N.S.B.C. Kamaruddin, L. Min-Tze, A.A. Karim, Ultrason. Sonochem. 18(6), 1295–1300 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    Q.Y. Zafra-Rojas, N. Cruz-Cansino, E. Ramírez-Moreno, L. Delgado-Olivares, J. Villanueva-Sánchez, E. Alanís-García, Ultrason. Sonochem. 20(5), 1283–1288 (2013)PubMedCrossRefGoogle Scholar
  22. 22.
    R.M. Aadil, X.-A. Zeng, Z. Han, D.-W. Sun, Food Chem. 141(3), 3201–3206 (2013)PubMedCrossRefGoogle Scholar
  23. 23.
    M. Abid et al., Ultrason. Sonochem. 20(5), 1182–1187 (2013)PubMedCrossRefGoogle Scholar
  24. 24.
    P. Khandpur, P.R. Gogate, Ultrason. Sonochem. 27, 87–95 (2015)PubMedCrossRefGoogle Scholar
  25. 25.
    I. Paniagua-Martínez, A. Mulet, M.A. García-Alvarado, J. Benedito, Innov. Food Sci. Emerg. Technol. 47, 362–370 (2018)CrossRefGoogle Scholar
  26. 26.
    B.K. Tiwari, C.P. Donnell, K. Muthukumarappan, P.J. Cullen, LWT—Food Sci. Technol. 42(3), 700–704 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Nadeem, N. Ubaid, T.M. Qureshi, M. Munir, A. Mehmood, Ultrason. Sonochem. 45, 1–6 (2018)PubMedCrossRefGoogle Scholar
  28. 28.
    C. Ozuna, A. Puig, J.V. Garcia-Perez, J.A. Cárcel, LWT—Food Sci. Technol. 59(1), 130–137 (2014)CrossRefGoogle Scholar
  29. 29.
    AOAC, Official Methods of Analysis (Association of Official Analytical Chemists, Arlingon, 1997)Google Scholar
  30. 30.
    E. Cohen, Y. Birk, C.H. Mannheim, I.S. Saguy, LWT—Food Sci. Technol. 31(7), 612–616 (1998)CrossRefGoogle Scholar
  31. 31.
    J. Wang, J. Wang, S.K. Ye, V. Vanga, Raghavan. Food Control 96, 128–136 (2019)CrossRefGoogle Scholar
  32. 32.
    K. Slinkard, V.L. Singleton, Am. J. Enol. Vitic. 28(1), 49–55 (1977)Google Scholar
  33. 33.
    U.K.S. Khanam, S. Oba, E. Yanase, Y. Murakami, J. Funct. Foods. 4(4), 979–987 (2012)CrossRefGoogle Scholar
  34. 34.
    C.E. Ochoa-Velasco, V. García-Vidal, J.J. Luna-Guevara, M.L. Luna-Guevara, P. Hernández-Carranza, J.Á. Guerrero-Beltrán, Sci. Agropecu. 3(4), 279–289 (2012)CrossRefGoogle Scholar
  35. 35.
    35. Secretaría de Salud, in Norma Oficial Mexicana NOM-092-SSA1-1994, (Diario Oficial de la Federación, Mexico D.F, 1994)Google Scholar
  36. 36.
    36. Secretaría de Salud, in Norma Oficial Mexicana NOM-111-SSA1-1994 (Diario Oficial de la Federación, Mexico D.F, 1994)Google Scholar
  37. 37.
    37. Secretaría de Salud, in Norma Oficial Mexicana NOM-110-SSA1-1994 (Diario Oficial de la Federación, Mexico D.F, 1994)Google Scholar
  38. 38.
    M. Saeeduddin et al., Int. J. Food Sci. Technol. 51(7), 1552–1559 (2016)CrossRefGoogle Scholar
  39. 39.
    V. Santhirasegaram, Z. Razali, C. Somasundram, Ultrason. Sonochem. 20(5), 1276–1282 (2013)PubMedCrossRefGoogle Scholar
  40. 40.
    D. Pingret, A.-S. Fabiano-Tixier, F. Chemat, Food Control 31(2), 593–606 (2013)CrossRefGoogle Scholar
  41. 41.
    M.H. Choi, G.H. Kim, H.S. Lee, Food Res. Int. 35(8), 753–759 (2002)CrossRefGoogle Scholar
  42. 42.
    B. Tomadoni, L. Cassani, G. Viacava, M.D.R. Moreira, A. Ponce, J. Food Process Eng. 40(5), e12533 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Ashokkumar, D. Sunartio, S. Kentish, R. Mawson, L. Simons, K. Vilkhu, C. Versteeg, Innov. Food Sci. Emerg. Technol. 9(2), 155–160 (2008)CrossRefGoogle Scholar
  44. 44.
    K. Guerrouj, M. Sánchez-Rubio, A. Taboada-Rodríguez, R.M. Cava-Roda, F. Marín-Iniesta, Food Bioprod. Process. 99, 20–28 (2016)CrossRefGoogle Scholar
  45. 45.
    V.P. Valdramidis, P.J. Cullen, B.K. Tiwari, C.P. O’Donnell, J. Food Eng. 96(3), 449–454 (2010)CrossRefGoogle Scholar
  46. 46.
    C.P. O’Donnell, B.K. Tiwari, P. Bourke, P.J. Cullen, Trends Food Sci. Technol. 21(7), 358–367 (2010)CrossRefGoogle Scholar
  47. 47.
    Y. Zou, A. Jiang, Y. Zou, A. Jiang, Food Sci. Technol. 36(1), 111–115 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-SalamancaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-SalamancaUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations