Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 3005–3014 | Cite as

LED irradiation delays the postharvest senescence of garland chrysanthemum (Chrysanthemum carinatum Schousb.)

  • Fuhui Zhou
  • Sitong Gu
  • Jinhua Zuo
  • Lipu Gao
  • Qing WangEmail author
  • Aili JiangEmail author
Original Paper


In the current study, the effect of white light-emitting diode (LED) light on the postharvest quality of garland chrysanthemum during storage at 20 °C was investigated. Results indicated that, compared to the control, LED treatment maintained higher chlorophyll (Chl) content, as well as a lower respiration rate, malondialdehyde content, and polyphenol oxidase activity. The activity of chlorophyll-degrading enzymes, including chlorophyllase, Mg-dechelatase, chlorophyll-degrading peroxidase, and pheophytinase were also lower in the LED-treated plants. Additionally, the activity of antioxidant enzymes, such as peroxidase, catalase, and ascorbate peroxidase were higher in LED-treated plants than in control plants. Results indicated that the LED treatment maintained the quality and prolonged the shelf-life of garland chrysanthemum, and that the mechanism associated with the beneficial effect of LED lighting may be related to the maintenance of membrane integrity, enhancement of antioxidant enzyme activity, and the inhibition of Chl degradation.


White LED light irradiation Membrane integrity Antioxidant activity Chlorophyll degradation 



This research was supported by the National Key R & D Program of China (2016YFD0400901), the China Agriculture Research System Project (CARS-23), the Young Investigator Fund of Beijing Academy of Agricultural and Forestry Sciences (QNJJ201709), and the special innovation ability construction fund of Beijing Academy of Agricultural and Forestry Sciences (20180404 and 20180705). We greatly appreciate to Dr. Michael Wisniewski, USDA-ARS-Appalachian Fruit Research Station for the critical reading of the manuscript.


  1. 1.
    P.P. Alvarez-Castellanos, C.D. Bishop, M.J. Pascual-Villalobos, Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 57(1), 99–102 (2001)PubMedGoogle Scholar
  2. 2.
    M. Kawaradani, K. Taguchi, K. Okada, Y. Hirooka, T. Sato, Seedling rot of garland chrysanthemum caused by Gibellulopsis chrysanthemi and ecological characters of the causal fungus. J. Gen. Plant Pathol. 79(5), 346–349 (2013)Google Scholar
  3. 3.
    Liu, X., Zhou, B., Yang, H., Li, Y., Yang, Q., Lu, Y., Gao, Y. (2018). Sequencing and analysis of Chrysanthemum carinatum Schousb and Kalimeris indica. The complete chloroplast genomes reveal two inversions and rbcL as barcoding of the vegetable. Molecules, 23(6), 1358–1380.PubMedCentralGoogle Scholar
  4. 4.
    C.H. Zheng, T.H. Kim, K.H. Kim, H.L. Yong, H.J. Lee, Characterization of potent aroma compounds in Chrysanthemum coronarium, L. (garland) using aroma extract dilution analysis. Flavour Fragr. J. 19(5), 401–405 (2010)Google Scholar
  5. 5.
    Y. Chuda, M. Suzuki, A. Tadahiro Nagata, T. Tsushida, Contents and cooking loss of three quinic acid derivatives from garland (Chrysanthemum coronarium L.). J. Agric. Food Chem. 46(4), 1437–1439 (1998)Google Scholar
  6. 6.
    L. Wei, C. Luo, X. Li, Z. Shen, Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense. L Arch. Environmental Contam. Toxicol. 55(2), 238–246 (2008)Google Scholar
  7. 7.
    C.H. Chang, Y.W. Wang, P.Y. Yeh Liu, Y.H. Kao Yang, A practical approach to minimize the interaction of dietary vitamin K with warfarin. J. Clin. Pharm. Ther. 39(1), 56–60 (2014)PubMedGoogle Scholar
  8. 8.
    Y. Chuda, H. Ono, M. Ohnishikameyama, A. Tadahiro Nagata, T. Tsushida, Structural identification of two antioxidant quinic acid derivatives from garland (Chrysanthemum coronarium L.). J. Agric. Food Chem. 44(8), 2037–2039 (1996)Google Scholar
  9. 9.
    T. Tsushida, M. Suzuki, M. Kurogi, Evaluation of antioxidant activity of vegetable extracts and determination of some active compounds. Nippon Shokuhin Kagaku Kogaku Kaishi 41(9), 611–618 (1994)Google Scholar
  10. 10.
    R.B.H. Wills, A.W.K. Wong, F.M. Scriven, H. Greenfield, Nutrient composition of Chinese vegetables. J. Agric. Food Chem. 32, 413–416 (1984)Google Scholar
  11. 11.
    S.M. Kim, S.H. Ryu, H.D. Choi, S.S. Kim, J.H. Kim, J.S. Kim, Screening for Korean vegetables with anticarcinogenic enzyme inducing activity using cell culture system. Prev. Nutr. Food Sci. 3(3), 277–281 (1998)Google Scholar
  12. 12.
    V.K. Gins, M.P. Kolesnikov, P.F. Kononkov, M.E. Trishin, M.S. Gins, Oxyanthraquinones and flavonoids from garland chrysanthenum. Prikl. Biokhim. Mikrobiol. 36(3), 344 (2000)PubMedGoogle Scholar
  13. 13.
    J.M. Choi, E.O. Lee, H.J. Lee, K.H. Kim, K.S. Ahn, B.S. Shim, N.I. Kim, M.C. Song, N.I. Baek, S.H. Kim, Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phytother. Res. 21(10), 954–959 (2010)Google Scholar
  14. 14.
    W.H. Chen, Y.L. Lin, Effects of microwave on nutritional quality of postharvest chrysanthemum segetum. Guangdong Agric. Sci. 10, 86–88 (2011)Google Scholar
  15. 15.
    J.H. Hasperué, L. Guardianelli, L.M. Rodoni, A.R. Chaves, G.A. Martínez, Continuous white–blue led light exposition delays postharvest senescence of broccoli. LWT Food Sci. Technol. 65, 495–502 (2016)Google Scholar
  16. 16.
    S. Aiamla-Or, T. Nakajima, M. Shigyo, N. Yamauchi, Pheophytinase activity and gene expression of chlorophyll-degrading enzymes relating to UV-B treatment in postharvest broccoli (Brassica oleracea L. italica Group) florets. Postharvest Biol. Technol. 63(1), 60–66 (2012)Google Scholar
  17. 17.
    B. Harbaum-Piayda, K. Palani, K. Schwarz, Influence of postharvest UV-B treatment and fermentation on secondary plant compounds in white cabbage leaves. Food Chem. 197(Pt A), 47–56 (2016)PubMedGoogle Scholar
  18. 18.
    W.H. Chen, S.L. Li, F.P. Zhang, Effect of bagging on the quality of garland chrysanthemum under normal temperature. North. Hortic. 2, 122–123 (2006)Google Scholar
  19. 19.
    L. Fang, R.Y. Liu, S. Sun, Z.H. Jin, L.L. Cai, Q. Zhu, Effect of short-wave ultraviolet irradiation on weight loss rate and VC content during storage of garland chrysanthemum. Anim. Husb. Feed Sci. 36(11), 6–7 (2015)Google Scholar
  20. 20.
    L.X. Deng, L. Fang, L. Zhu, B. Gao, X. Xiao, Q. Zhu, Effect of UV-C irradiation on cell membrane permeability and SOD activity during storage of garland chrysanthemum. Anim. Husb. Feed Sci. 37(11), 6–7 (2016)Google Scholar
  21. 21.
    G. Samuolienė, R. Sirtautas, A. Brazaitytė, P. Duchovskis, LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134(3), 1494–1499 (2012)PubMedGoogle Scholar
  22. 22.
    J. Chory, M. Chatterjee, R.K. Cook, T. Elich, C. Fankhauser, J. Li, P. Nagpal, M. Neff, A. Pepper, A. Poole, J. Reed, V. Vitart, From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc. Natl. Acad. Sci. USA 93(22), 12066–12071 (1996)PubMedGoogle Scholar
  23. 23.
    G.D. Goins, N.C. Yorio, M.M. Sanwo, C.S. Brown, Photomorphogenesis, photosynthesis, and seed yield of wheat plant grown under red light-emitting diodes (LED) with and without supplemental blue lighting. J. Exp. Bot. 48(312), 1407–1413 (1997)PubMedGoogle Scholar
  24. 24.
    Jung, E. S., Lee, S., Lim, S. H., Ha, S. H., Liu, K. H., Lee, C. H. (2013). Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci., 210(210C), 61–69.PubMedGoogle Scholar
  25. 25.
    R.C. Morrow, LED lighting in horticulture. HortScience 43(7), 1947–1950 (2008)Google Scholar
  26. 26.
    X.L. Chen, X.Z. Xue, W.Z. Guo, L.C. Wang, X.J. Qiao, Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci. Hortic. 200, 111–118 (2016)Google Scholar
  27. 27.
    Z. Bliznikas, A. Zukauskas, G. Samuolienė, A. Viršilė, A. Brazaitytė, J. Jankauskienė, P. Duchovskis, A. Novičkovas, Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Hortic. 939(939), 85–91 (2012)Google Scholar
  28. 28.
    M.U. Kasim, R. Kasim, While continuous white led lighting increases chlorophyll content (SPAD), green led light reduces the infection rate of lettuce during storage and shelf-life conditions. J. Food Process. Preserv. 41, 13266–13272 (2017)Google Scholar
  29. 29.
    J.H. Hasperué, L.M. Rodoni, L.M. Guardianelli, A.R. Chaves, G.A. Martínez, Use of led light for brussels sprouts postharvest conservation. Sci. Hortic. 213, 281–286 (2016)Google Scholar
  30. 30.
    G. Ma, L. Zhang, C.K. Setiawan, K. Yamawaki, T. Asai, F. Nishikawa, S. Maezawa, H. Sato, N. Kanemitsu, M. Kato, Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biol. Technol. 94(7), 97–103 (2014)Google Scholar
  31. 31.
    P. Jin, D. Yao, F. Xu, H. Wang, Y. Zheng, Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chem. 172, 705–709 (2015)PubMedGoogle Scholar
  32. 32.
    C. Burana, V. Srilaong, Effect of UV-C irradiation on chlorophyll degradation and quality changes in Chinese kale (Brassica oleracea var. alboglabra). Acta Hortic. 875, 119–126 (2010)Google Scholar
  33. 33.
    B. Sun, H. Yan, N. Liu, J. Wei, Q. Wang, Effect of 1-MCP treatment on postharvest quality characters, antioxidants and glucosinolates of Chinese kale. Food Chem. 131(2), 519–526 (2012)Google Scholar
  34. 34.
    H. Zhang, S.L. Hu, Z.J. Zhang, L.Y. Hu, C.X. Jiang, Z.J. Wei, J. Liu, H.L. Wang, S.T. Jiang, Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol. Technol. 60(3), 251–257 (2011)Google Scholar
  35. 35.
    W.Z. Hu, A.L. Jiang, M.X. Tian, C.H. Liu, Y.Y. Wang, Effect of ethanol treatment on physiological and quality attributes of fresh-cut eggplant. J. Sci. Food Agric. 90(8), 1323–1326 (2010)PubMedGoogle Scholar
  36. 36.
    J.J. Deng, Y. Bi, Z.K. Zhang, D.F. Xie, Y.H. Ge, W.H. Li, J.J. Wang, Y. Wang, Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo, L.) fruit. Postharvest Biol. Technol. 106, 53–61 (2015)Google Scholar
  37. 37.
    J. Li, J. Yan, M.A. Ritenour, J. Wang, J. Cao, W. Jiang, Effects of 1-methylcyclopropene on the physiological response of Yali pears to bruise damage. Sci. Hortic. 200, 137–142 (2016)Google Scholar
  38. 38.
    J.Y. Shi, L.P. Gao, J.H. Zuo, Q. Wang, L.L. Fan, Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharvest Biol. Technol. 116, 98–104 (2016)Google Scholar
  39. 39.
    W. Kraj, Chlorophyll degradation and the activity of chlorophyllase and Mg-dechelatase during leaf senescence in Fagus sylvatica. Dendrobiology 74, 43–57 (2015)Google Scholar
  40. 40.
    Sukanya, A., Samak, K., Masayoshi, S., Naoki, Y. (2010). Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica group) florets. Food Chem., 120(3), 645–651.Google Scholar
  41. 41.
    V.B.M. Mbong, J. Ampofo-Asiama, M.L.A.T. Hertog, A.H. Geeraerd, B.M. Nicolai, The effect of temperature on the metabolic response of lamb’s lettuce (Valerianella locusta, (L), Laterr.) cells to sugar starvation. Postharvest Biol. Technol. 125, 1–12 (2017)Google Scholar
  42. 42.
    F. Xu, L. Shi, W. Chen, S. Cao, X. Su, Z. Yang, Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci. Hortic. 175(1), 181–186 (2014)Google Scholar
  43. 43.
    A.A. Kader, M.E. Saltveit, Respiration and gas exchange, in Postharvest Physiology and Pathology of Vegetables, 2nd edn., ed. by J. Bartz, J. Brecht (Marcel Dekker Inc., New York, 2003), pp. 7–32Google Scholar
  44. 44.
    L.J. Zhan, J.Q. Hu, L.Y. Pang, Y. Li, J.F. Shao, Light exposure reduced browning enzyme activity and accumulated total phenols in cauliflower heads during cool storage. Postharvest Biol. Technol. 88(2), 17–20 (2014)Google Scholar
  45. 45.
    J. Yan, Y. Song, J. Li, W. Jiang, Forced air precooling treatment enhanced antioxidant capacities of apricots. J. Food Process. Preserv. 3, e13320 (2017)Google Scholar
  46. 46.
    Y. Wang, L. Zhang, S. Zhu, 1-Methylcyclopropene (1-MCP)-induced protein expression associated with changes in Tsai Tai (Brassica chinensis) leaves during low temperature storage. Postharvest Biol. Technol. 87(87), 120–125 (2014)Google Scholar
  47. 47.
    L. Costa, A.R. Vicente, P.M. Civello, A.R. Chaves, G.A. Martínez, UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biol. Technol. 39(2), 204–210 (2006)Google Scholar
  48. 48.
    N. Pongprasert, Y. Sekozawa, S. Sugaya, H. Gemma, A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel. Sci. Hortic. 130(1), 73–77 (2011)Google Scholar
  49. 49.
    S. Hörtensteiner, Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57(50), 55 (2006)PubMedGoogle Scholar
  50. 50.
    L. Tang, E.K.A. Fukusaki, A. Okazawa, Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints. Z. Naturforsch. 55(12), 923–926 (2000)Google Scholar
  51. 51.
    P. Matile, Catabolism of chlorophyll: involvement of peroxidase? Z. Pflanzenphysiol. 99(5), 475–478 (1980)Google Scholar
  52. 52.
    N. Yamauchi, X. Xia, F. Hashinaga, Involvement of flavonoid oxidation with chlorophyll degradation by peroxidase in wase satsuma mandarin fruits. Engei Gakkai Zasshi 66(2), 283–288 (1997)Google Scholar
  53. 53.
    L.L. Deng, Z.Y. Yuan, J. Xie, S.X. Yao, K.F. Zeng, Sensitivity to ethephon degreening treatment is altered by blue led light irradiation in mandarin fruit. J. Agric. Food Chem. 65, 6158–6168 (2017)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life ScienceDalian Minzu UniversityDalianChina

Personalised recommendations