Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2970–2979 | Cite as

Chemical, structural and functional properties of whey proteins covalently modified with phytochemical compounds

  • Mostafa AliEmail author
Original Paper
  • 39 Downloads

Abstract

This work was conducted to understand the covalent interactions of whey protein isolate (WPI) with some phytochemical compounds including chlorogenic acid (CQA), rosmarinic acid (RA) and quercetin (Q) (0.3 mmol/g protein). The influences of such interactions on the chemical, structural and functional properties of the WPI were studied. The changes in protein–phenolic conjugates properties were characterized by the change in free amino and thiol groups, tryptophan content, UV–Vis scan and particle size. Moreover, the electrospray ionization-quadrupole-time of flight (ESI-Q-TOF) mass spectrometry, RP-HPLC, TEAC and DPPH assays were also used to evaluate these changes. In addition, the change in isoelectric points of modified proteins was examined using the change in the zeta potential at different pH values. The results showed that these interactions caused a decrease in both free amino and thiol groups and tryptophan content, where the addition of CQA, RA and Q led to decrease in the thiol groups content by about 47.6, 96.1 and 65.8%, respectively. While, the content of tryptophan residue decreased from 29.9 ± 0.3 (nmol/mg protein, for WPI control) to 19.3 ± 0.1, 7.9 ± 0.1 and 17.2 ± 1.0 after interacting with CQA, RA and Q, respectively. The structure of WPI- phenolic conjugates altered compared to the structure of WPI control. The modified proteins displayed very slight shifts in the isoelectric points compared to the unmodified ones. Moreover, these interactions increased the antioxidant capacity of proteins about 2.7 to 3.4 folds compared to WPI control. Therefore, it is strongly recommended to use the modified WPI for preparing functional food products with a high antioxidative power.

Keywords

Whey protein isolate ESI-Q-TOF–MS Rosmarinic acid Covalent interactions Zeta potential 

Notes

Acknowledgements

The author would like to thank Egyptian Government for Financial Support and staff of the division of Food Technology, Institute of Human Nutrition and Food Science, University of Kiel, Germany for his technical support analysis and providing him with whey protein isolate.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    H.M. Farrell Jr., R. Jimenez-Flores, G.T. Bleck, E.M. Brown, J.E. Butler, L.K. Creamer, C.L. Hicks, C.M. Hollar, K.F. Ng-Kwai-Hang, H.E. Swaisgood, J. Dairy Sci. 87, 1641–1674 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    T. Arriaga, MSc. thesis, Superior Tecnico Inst., Lisbon Univ., Portugal (2011)Google Scholar
  3. 3.
    S.C. Wilde, C. Treitz, J.K. Keppler, T. Koudelka, K. Palani, A. Tholey, H.M. Rawel, K. Schwarz, Food Chem. 197, 1022–1029 (2016)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Ali and M.M. Elsharkawy, J. Food and Dairy Sci. J. Mansoura Univ.9, 385–393 (2018).Google Scholar
  5. 5.
    R. Aschaffenburg, J. Drewry, Biochem. J. 65, 273 (1957)PubMedPubMedCentralGoogle Scholar
  6. 6.
    M. Boland, H. Singh, and A. Thompson, Milk Proteins: From expression to Food. Academic Press, London. (2014)Google Scholar
  7. 7.
    A.J. Parr, G.P. Bolwell, J. Sci. Food Agric. 80, 985–1012 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Ali, K. Schwarz, J. Agroaliment. Process. Technol. 24, 301–310 (2018)Google Scholar
  9. 9.
    A.A. Abd El-Maksoud, I.H. Abd El-Ghany, H.S. El-Beltagi, S. Anankanbil, C. Banerjee, S.V. Petersen, B. Pérez, Z. Guo (2018) Food Chem. 241:281–289.PubMedCrossRefGoogle Scholar
  10. 10.
    M. Ali, E. Elsebaie, J. Agroaliment. Processes Technol. 20, 152–160 (2018)Google Scholar
  11. 11.
    H. Rawel, S. Rohn, Phytochem Rev. 9, 93–109 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Rohn, H.M. Rawel, J. Kroll, J. Agric. Food Chem. 50, 3566–3571 (2002)PubMedCrossRefGoogle Scholar
  13. 13.
    S.V.E. Prigent, A.G.J. Voragen, A.J.W.G. Visser, G.A. van Koningsveld, H. Gruppen, J. Sci. Food Agric. 87, 2502–2510 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Ali, T. Homann, M. Khalil, H.-P. Kruse, H. Rawel, J. Agric. Food Chem. 61, 6911–6920 (2013)PubMedCrossRefGoogle Scholar
  15. 15.
    Z. Jia, M. Zheng, F. Tao, W. Chen, G. Huang, J. Jiang, LWT-Food Sci. Technol. 66, 305–310 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Rohn, H.M. Rawel, J. Kroll, J. Agric. Food Chem. 52, 4725–4729 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    T. Aewsiri, S. Benjakul, W. Visessanguan, J.-B. Eun, P.A. Wierenga, H. Gruppen, Food Chem. 117, 160–168 (2009)CrossRefGoogle Scholar
  18. 18.
    J. You, Y. Luo, J. Wu, J. Agric. Food Chem. 62, 2581–2587 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Cao, Y.L. Xiong, J. Agric Food Chem. 65, 8443–8450 (2017)PubMedCrossRefGoogle Scholar
  20. 20.
    N.J. Baxter, T.H. Lilley, E. Haslam, M.P. Williamson, Biochemistry 36, 5566–5577 (1997)PubMedCrossRefGoogle Scholar
  21. 21.
    J. Kroll, H.M. Rawel, A.S. Rohn, Food Sci. Technol. Res. 9, 205–218 (2003)CrossRefGoogle Scholar
  22. 22.
    S.V.E. Prigent, A.G.J. Voragen, F. Li, A.J.W.G. Visser, G.A. van Koningsveld, H. Gruppen, J. Sci. Food Agric. 88, 1748–1754 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Ali, T. Homann, J. Kreisel, M. Khalil, R. Puhlmann, H.-P. Kruse, H. Rawel, J. Agric. Food Chem. 60, 11601–11608 (2012)PubMedCrossRefGoogle Scholar
  24. 24.
    H.M. Rawel, J. Kroll, B. Riese, J. Food Sci. 65, 1091–1098 (2000)CrossRefGoogle Scholar
  25. 25.
    H.M. Rawel, J. Kroll, U.C. Hohl, Nahrung 45, 72–81 (2001)PubMedCrossRefGoogle Scholar
  26. 26.
    J. Kroll, H.M. Rawel, S. Rohn, D. Czajka, Nahrung 45, 388–389 (2001)PubMedCrossRefGoogle Scholar
  27. 27.
    J. Kroll, H.M. Rawel, J. Food Sci. 66(1), 48–58 (2001)CrossRefGoogle Scholar
  28. 28.
    H.M. Rawel, D. Czajka, S. Rohn, J. Kroll, Int. J. Biol. Macromol. 30, 137–150 (2002)PubMedCrossRefGoogle Scholar
  29. 29.
    S. Rohn, H.M. Rawel, M. Röber, J. Kroll, Int. J. Food Sci. Technol. 40, 771–782 (2005)CrossRefGoogle Scholar
  30. 30.
    H.M. Rawel, K. Meidtner, J. Kroll, J. Agric. Food Chem. 53, 4228–4235 (2005)PubMedCrossRefGoogle Scholar
  31. 31.
    V. Ferraro, A.R. Madureira, B. Sarmento, A. Gomes, M.E. Pintado, Food Res. Int. 77, 450–459 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Feng, C. Li, N. Ullah, J. Cao, Y. Lan, W. Ge, R.M. Hackman, Z. Li, L. Chen, J. Dairy Sci. 98, 7602–7613 (2015)PubMedCrossRefGoogle Scholar
  33. 33.
    J.K. Keppler, T. Koudelka, K. Palani, M.C. Stuhldreier, F. Temps, A. Tholey, K. Schwarz, J. Biomol. Struct. Dyn. 32, 1103–1117 (2014)PubMedCrossRefGoogle Scholar
  34. 34.
    J.K. Keppler, K. Schwarz, Colloids Surf. A522, 514–524 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Belatik, C. Kanakis, S. Hotchandani, P. Tarantilis, M. Polissiou, H. Tajmir-Riahi, J. Biomol. Struct. Dyn. 30, 437–447 (2012)PubMedCrossRefGoogle Scholar
  36. 36.
    Y. Cao, Y.L. Xiong, J. Food Sci. 82, 409–419 (2017)PubMedCrossRefGoogle Scholar
  37. 37.
    F. Liu, C. Sun, D. Wang, F. Yuan, Y. Gao, RSC Adv. 5, 78215–78228 (2015)CrossRefGoogle Scholar
  38. 38.
    V. Bongartz, L. Brandt, M. Gehrmann, B. Zimmermann, N. Schulze-Kaysers, A. Schieber, Molecules 21, 91 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    M. Ali, S.G. Arafa, J. Food Dairy Sci. 10, 1–8 (2019)CrossRefGoogle Scholar
  40. 40.
    J. Adler-Nissen, J. Agric. Food Chem. 24, 1090–1093 (1976)PubMedCrossRefGoogle Scholar
  41. 41.
    K. Hofmann, R. Hamm, C.O. Chichester, Adv. Food Res. 24, 1–111 (1978)PubMedCrossRefGoogle Scholar
  42. 42.
    M. Ali, J.K. Keppler, T. Coenye, K. Schwarz, J. Food Sci. 83, 2092–2100 (2018)PubMedCrossRefGoogle Scholar
  43. 43.
    R.S.H. Lam, M.T. Nickerson, LWT-Food. Sci. Technol. 60, 427–434 (2015)Google Scholar
  44. 44.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  45. 45.
    W. Binsan, S. Benjakul, W. Visessanguan, S. Roytrakul, M. Tanaka, H. Kishimura, Food Chem. 106, 185–193 (2008)CrossRefGoogle Scholar
  46. 46.
    P.W. Harlina, R. Shahzad, M. Ma, F. Geng, Q. Wang, L. He, S. Ding, N. Qiu, J. Food Process. Preserv. 39, 2897–2911 (2015)CrossRefGoogle Scholar
  47. 47.
    J.K. Keppler, D. Martin, V.M. Garamus, C. Berton-Carabin, E. Nipoti, T. Coenye, K. Schwarz, Food Hydrocoll. 65, 130–143 (2017)CrossRefGoogle Scholar
  48. 48.
    H.M. Rawel, S. Rohn, H.-P. Kruse, J. Kroll, Food Chem. 78, 443–455 (2002)CrossRefGoogle Scholar
  49. 49.
    H.M. Rawel, S. Rohn, J. Kroll, Deut. Lebensm-Rundsch. 101. Jahrgang, Heft 4, (2005)Google Scholar
  50. 50.
    G. Gbassi, F. Yolou, S. Sarr, P. Atheba, C.N. Amin, M. Ake, Int. J. Biol. Chem. Sci. 6, 1828–1837 (2012)Google Scholar
  51. 51.
    D.D. McPhail, C.R. Hartley, T.P. Gardner, G.G. Duthie, J. Agric. Food Chem. 51(6), 1684–1690 (2003)PubMedCrossRefGoogle Scholar
  52. 52.
    D. Bassil, D.P. Makris, P. Kefalas, Food Res. Int. 38, 395–402 (2005)CrossRefGoogle Scholar
  53. 53.
    K.R. Kukic, PhD. Thesis, Potsdam Univ. (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Technology, Faculty of AgricultureKafrelsheikh UniversityKafr El-SheikhEgypt
  2. 2.Division of Food Technology, Institute of Human Nutrition and Food ScienceKiel UniversityKielGermany

Personalised recommendations