Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2862–2870 | Cite as

Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking

  • Lucila Concepción Núñez-Bretón
  • Liliana Catalina Cruz-Rodríguez
  • María Luisa Tzompole-Colohua
  • Jaime Jiménez-Guzmán
  • María de Jesús Perea-Flores
  • Walfred Rosas-Flores
  • Francisco Erik González-JiménezEmail author
Original Paper

Abstract

Chemical modification of the native starch of Mexican Oxalis tuberosa was studied by cross-linking it with different concentrations of epichlorohydrin (0.5–2%). The results showed an extraction yield of 65.1 ± 0.20% (dry basis) for native starch, which can be considered as a potential unconventional source for starch extraction. The amylose contents of native and modified starch decreased from 24.66 to 13.57%, respectively. X-ray diffraction analysis showed an increase in the crystalline part in modified starch. The chemical modification changed the functional properties of starch. The clarity of the paste determined by spectrophotometer at 650 nm showed an inversely proportional relationship with the epichlorohydrin concentration. The lipid absorption index showed an increase up to 210% (using 2% epichlorohydrin) compared to that of native starch. The structure was analyzed by SEM and showed granules before and after the modification an ellipsoid morphology while the polarized light microscopy analysis showed birefringence patterns. The average diameter of the granules evaluated using a particle size analyzer (CILAS) ranged between 31.46 μm and 35.32 μm for modified starch and was 30.36 μm for the native starch, both higher than that of the corn-starch granules (16.10 μm). This makes the Mexican O. tuberosa an option for starch extraction and for application in the food industry.

Keywords

Amylose content Particle size Epichlorohydrin Birefringence 

Notes

Acknowledgements

The obtaining of results of this work counted with contributions of PFCE (Program for Strengthening Educational Quality-SEP) 2017 resources. Financial resources of a public nature. Its use is prohibited for personal or partisan promotion purposes.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    X. Fan, S. Zhang, L. Lin, L. Zhao, A. Liu, C. Wei, Food Hydrocoll. 61, 183–190 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Wei, R. Andersson, G. Xie, S. Salehi, D. Boström, Starch/Starkë 70, 5–6 (2018)Google Scholar
  3. 3.
    K. Guo, L. Lin, X. Fan, L. Zhang, C. Wei, Food Chem. 257, 75–82 (2018)CrossRefGoogle Scholar
  4. 4.
    R.C. Turola-Barbi, G. Lopes-Teixeira, P.S. Silveira-Hornung, S. Ávila, R.H. Ribani, Food Hydrocoll. 77, 646–658 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Jamir, K. Seshagirirao, Food Hydrocoll. 72, 247–253 (2017)CrossRefGoogle Scholar
  6. 6.
    A.R. Cortella, M.L. Pochettino, Starch/Starkë 47, 455–461 (1995)CrossRefGoogle Scholar
  7. 7.
    A.N. Hernández-Lauzardo, J. Solorza-Feria, L.A. Bello-Pérez, Starch/Starkë 56, 357–363 (2004)CrossRefGoogle Scholar
  8. 8.
    A.O. Oladebeye, A.A. Oshodi, I.A. Amoo, A.A. Karim, A.A. Oladebeye, Food Meas. 13, 16–25 (2019)CrossRefGoogle Scholar
  9. 9.
    M. Sjӧӧ, L. Nilsson, Starch Food: Structure, Function and Applications, 2nd edn. (Woodhead, Cambridge, 2018)Google Scholar
  10. 10.
    T. Mehfooz, T.M. Ali, A. Hasnain, J. Food Meas. Charact. 13, 1058–1069 (2019)CrossRefGoogle Scholar
  11. 11.
    H. Heo, Y. Lee, Y.H. Chang, Int. J. Food Prop. 20, 2138–2150 (2017)Google Scholar
  12. 12.
    M. Kim, S. Lee, Carbohydr. Polym. 50, 331–337 (2002)CrossRefGoogle Scholar
  13. 13.
    ISO, Rice—Determination of amylose content—Part 1: Referencen method (2007)Google Scholar
  14. 14.
    K.S. Aplevicz, I.M. Demiate, Ciênc. Technol. Aliment 27, 478–484 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Timgren, M. Rayner, P. Dejmek, D. Marku, Food Sci. Nutr. 1, 157–171 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Sánchez-Becerril, A.G. Marangoni, M.J. Perea-Flores, N. Cayetano-Castro, H. Martinez-Gutiérrez, J.A. Andraca-Adame, J. Pérez-Martinez, Food Struct. 16, 1–7 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Jiménez-Guzmán, D.E. Leyva-Daniel, B.H. Camacho-Díaz, A.R. Jimenéz-Aparicio, in Sustainable Drying Technologies, ed. by I. J. del Real Olvera (IntechOpen, London, 2016), pp. 79–94Google Scholar
  18. 18.
    J. Colivet, R.A. Carvalho, Ind. Crop. Prod. 95, 599–607 (2016)CrossRefGoogle Scholar
  19. 19.
    F.F. Velásquez-Barreto, L.A. Bello-Pérez, H. Yee-Madeira, C.E. Velezmoro-Sánchez, Starch/Starkë 71, 1–8 (2018)Google Scholar
  20. 20.
    J. Singh, L. Kaur, M.A. Burlinton, Advances in Potato Chemistry and Technology, 2nd edn. (Academic Press Editorial Elsevier Inc., San Diego, 2016), p. 752Google Scholar
  21. 21.
    O.S. Kittipongpatana, N. Kittipongpatana, Food Chem. 141, 1438–1444 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Wang, C. Li, L. Copeland, Q. Niu, S. Wang, Compr. Rev. Food Sci. Food Saf.14, 568–585 (2015)CrossRefGoogle Scholar
  23. 23.
    A.N. Jyothi, S.N. Moorthy, K.N. Rajasekharan, Starch/Starkë 58, 292–299 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Hedayati, M. Niakousari, Food Hydrocoll. 81, 1–5 (2018)CrossRefGoogle Scholar
  25. 25.
    R. Verma, S. Jan, S. Rani, T.L. Swer, K.S. Prakash, M.Z. Dar, Radiat. Phys. Chem. 144, 37–42 (2018)CrossRefGoogle Scholar
  26. 26.
    D. Chandanasree, K. Gul, C.S. Riar, Food Hydrocoll. 52, 175–182 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Kong, X. Zhou, Z. Sui, J. Bao, Int. J. Biol. Macromol. 91, 1141–1150 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.C. Lai, S.Y. Wang, H.Y. Gao, K.M. Nguyen, C.H. Nguyen, M.C. Shih, K.H. Lin, Food Chem. 199, 556–564 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Ackar, J. Babic, D. Šubaric, M. Kopjar, B. Milic, Carbohydr. Polym. 81, 76–82 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Marefati, B. Wiege, N.U. Haase, M. Matos, M. Rayner, Carbohydr. Polym. 175, 473–483 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Bai, S. Huan, Z. Li, D.J. Mcclements, Food Hydrocoll. 66, 144–153 (2017)CrossRefGoogle Scholar
  32. 32.
    D.S. De Castro, M.I. Dos Santos, L.M. De Melo Silva, L.J. Pereira, W. Pereira da Silva, F.R. Feitosa, Food Res. Int., 90, 121–132 (2018)Google Scholar
  33. 33.
    J.H. Han, G.H. Seo, I.M. Park, G.N. Kim, D.S. Lee, Food Eng. Phys. Prop. 71, 290–296 (2006)Google Scholar
  34. 34.
    M. Xu, A.S.M. Saleh, B. Gong, B. Li, L. Jing, M. Gou, H. Jiang, W. Li, Food Res. Int. 111, 324–333 (2018)CrossRefGoogle Scholar
  35. 35.
    B. Zhang, X. Li, J. Liu, F. Xie, L. Chen, Food Hydrocoll. 31, 68–73 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lucila Concepción Núñez-Bretón
    • 1
  • Liliana Catalina Cruz-Rodríguez
    • 2
  • María Luisa Tzompole-Colohua
    • 2
  • Jaime Jiménez-Guzmán
    • 2
  • María de Jesús Perea-Flores
    • 3
  • Walfred Rosas-Flores
    • 4
  • Francisco Erik González-Jiménez
    • 2
    Email author
  1. 1.Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados “CINVESTAV-IPN”Instituto Politécnico NacionalCiudad de MéxicoMéxico
  2. 2.Facultad de Ciencias QuímicasUniversidad VeracruzanaOrizabaMéxico
  3. 3.Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico NacionalCiudad de MéxicoMéxico
  4. 4.Departamento de Ingeniería Química y BioquímicaTecnológico Nacional de México/I.T. Durango.DurangoMéxico

Personalised recommendations