Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2812–2821 | Cite as

Effect of Jerusalem artichoke (Helianthus tuberosus L.) supplementation on chemical and nutritional properties of crackers

  • Ezgi Ozgoren
  • Fatma IsikEmail author
  • Aydin Yapar
Original Paper
  • 40 Downloads

Abstract

Jerusalem artichoke (Helianthus tuberosus L.) is known to be a good source of inulin-like fructans, other dietary fibers, and some minerals, especially K. In this study, the potential use of Jerusalem artichoke powder (JAP) in crackers is studied as a partial substitute for wheat flour (10, 20, and 30%). The addition of JAP caused a significant (p < 0.05) increase in ash, dietary fiber (soluble, insoluble, total), magnesium, calcium, potassium, phosphorus, total phenolics, antioxidant capacity and Hunter a color value, and a decrease (p < 0.05) in protein and carbohydrate contents, energy, b and L values and hardness. The JAP-added samples had larger air cells than the control samples on inner SEM images. The color, odor and taste scores of all crackers were statistically (p > 0.05) similar, while the JAP-added formulations received significantly (p < 0.05) higher scores in crispiness and overall acceptability. The results of the study show that JAP could be used as a natural source of inulin and other dietary fibers in cracker production.

Keywords

Cracker Jerusalem artichoke Dietary fiber Mineral SEM image Sensory 

Notes

References

  1. 1.
    S.J. Kays, S.F. Nottingham, Biology and Chemistry of Jerusalem Artichoke (CRC Press, Boca Raton, 2008), pp. 1–6Google Scholar
  2. 2.
    L. Yang, Q.S. He, K. Corscadden, C.C. Udenigve, Biotechnol. Rep. 5, 77–88 (2015)CrossRefGoogle Scholar
  3. 3.
    C.J. Swanton, P.B. Cavers, D.R. Clements, M.J. Moore, Can. J. Plant Sci. 72, 1367–1382 (1992)CrossRefGoogle Scholar
  4. 4.
    N. Petkova, I. Ivanov, P. Denev, A. Pavlov, Turk. J. Agric. Nat. Sci. 2, 1773–1778 (2014)Google Scholar
  5. 5.
    Z.C. Somda, W.J. McLaurin, S.J. Kays, J. Plant Nutr. 22(8), 1315–1334 (1999)CrossRefGoogle Scholar
  6. 6.
    S. Terzic, J. Atlagic, I. Maksimovic, T. Zeremski, M. Zoric, V. Miklic, I. Balalic, Sci. Hortic 136, 135–144 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Kleessen, S. Schwarz, A. Boehm, H. Fuhrmann, A. Richter, T. Henle, M. Krueger, Br. J. Nutr. 98, 540–549 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    P. Ramnani, E. Gaudier, M. Bingham, P. van Bruggen, K.M. Tuohy, G.R. Gibson, Br. J. Nutr. 104, 233–240 (2010)PubMedCrossRefGoogle Scholar
  9. 9.
    V. Bach, S. Jensen, U. Kidmose, J.N. Sørensen, M. Edelenbos, LWT-Food. Sci. Technol. 54(1), 165–170 (2013)CrossRefGoogle Scholar
  10. 10.
    W.M. El-Kholy, H. Mahrous, Food Nutr. Sci. 6, 1552–1564 (2015)Google Scholar
  11. 11.
    A. Böhm, I. Kaiser, A. Trebstein, T. Henle, Eur. Food. Res. Technol. 220, 466–471 (2005)CrossRefGoogle Scholar
  12. 12.
    C.J. Pollock, A.J. Cairns, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 77–101 (1991)CrossRefGoogle Scholar
  13. 13.
    M.J. Cabezas, C. Rabert, S. Bravo, C. Shene, J. Food Sci. 67(8), 2860–2865 (2002)CrossRefGoogle Scholar
  14. 14.
    V.D. Capriles, J.A.G. Areas, Food Funct. 4, 104–110 (2013)PubMedCrossRefGoogle Scholar
  15. 15.
    S. Kolida, K. Tuohy, G.R. Gibson, Br. J. Nutr. 87(2), 193–197 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Roberfroit, G.R. Gibson, L. Hoyles, A.L. McCartney, Br. J. Nutr. 104(2), 1–63 (2010)CrossRefGoogle Scholar
  17. 17.
    I. Sedej, M. Sakac, A. Mandic, A. Misan, M. Pestoric, O. Simurina, J. Canadanovic-Brunet, Food Sci. Technol. 44, 694–699 (2011)Google Scholar
  18. 18.
    J. Han, J.A.M. Janz, M. Gerlat, Food Res. Int. 43, 627–633 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Yoneya, W.-K. Nip, in Bakery Products, Science and Technology, ed. By Y.H. Hui (Blackwell Publishing, Iowa, 2006), p. 411Google Scholar
  20. 20.
    M. Kweon, L. Slade, H. Levine, D. Gannon, Crit. Rev. Food Sci. 54(1), 115–138 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Isik, C. Topkaya, Ital. J. Food Sci. 28, 525–535 (2016)Google Scholar
  22. 22.
    Association of Official Analytical Chemists, Official Methods of Analysis, 15th edn. (Association of Official Analytical Chemists, Washington DC, 2000)Google Scholar
  23. 23.
    Association of Official Analytical Chemists. Total, Insoluble and Soluble Dietary Fiber in Food-Enzymatic-Gravimetric Method (Method 991.43) MES TRIS Buffer, 16th edn. (AOAC International, Gaithersburg, 1995)Google Scholar
  24. 24.
    Approved Methods of the American Association of Cereal Chemists. Determination of Soluble, Insoluble and Total Dietary Fiber in Foods and Food Products (Method 32-07), 9th edn. (AACC Inc., St. Paul, 1995)Google Scholar
  25. 25.
    C.E. Chinma, D.I. Gernah, J. Food. Technol. 5(3), 256–260 (2007)Google Scholar
  26. 26.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Method Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  27. 27.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J. Food Compos. Anal. 19(6–7), 669–675 (2006)CrossRefGoogle Scholar
  28. 28.
    J. Yamauchi, Handbook of colour science (Japanese Academy of Colour Science, Tokyo, Japan, 1989)Google Scholar
  29. 29.
    A. Panghal, N. Chhikara, B.S. Khatkar, J. Food Sci. Technol. 55(8), 3127–3134 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    W. Praznik, E. Cieslik, A. Filipiak-Florkiewicz, Nahrung 46(3), 151–157 (2002)PubMedCrossRefGoogle Scholar
  31. 31.
    W.J. Yuan, X.Q. Zhao, X.M. Ge, F.W. Bai, J. Appl. Microbiol. 105, 2076–2083 (2008)PubMedCrossRefGoogle Scholar
  32. 32.
    S. Terzic, J. Atlagic, Genetica 41(3), 289–295 (2009)Google Scholar
  33. 33.
    E. Cieślik, A. Gębusia, A. Florkiewicz, B. Mickowska, Acta Sci. Pol. Technol. Aliment. 10(4), 433–441 (2011)PubMedGoogle Scholar
  34. 34.
    L. Li, L. Li, Y. Wang, Y. Du, S. Qin, Biotechnol. Lett. 35, 471–477 (2013)PubMedCrossRefGoogle Scholar
  35. 35.
    T. Krivorotova, J. Sereikaite, Acta Physiol Plant 36, 79–83 (2014)CrossRefGoogle Scholar
  36. 36.
    P. Glibowski, A. Bukowska, Acta Sci. Pol. Technol. Aliment. 10(2), 189–196 (2011)Google Scholar
  37. 37.
    K. Trabs, N. Kasprick, T. Henle, Eur. Food Res. Technol. 233, 151–158 (2011)CrossRefGoogle Scholar
  38. 38.
    WHO, Diet, nutrition and the prevention of chronic diseases (Report of a joint WHO/FAO expert consultation, WHO technical report series No. 916, Geneva, 2003)Google Scholar
  39. 39.
    Y. Park, A.F. Subar, A. Hollenbeck, A. Schatzkin, Arch. Intern. Med. 171(12), 1061–1068 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    M. Arslan, A. Rakha, M.R. Khan, X. Zou, J. Food Meas. Charact. 11, 1959–1968 (2017)CrossRefGoogle Scholar
  41. 41.
    V.M.R. Krishnamurthy, G. Wei, B.C. Baird, M. Murtaugh, M.B. Chonchol, K.L. Raphael, T. Greene, S. Beddhu, Kidney Int. 81, 300–306 (2012)PubMedCrossRefGoogle Scholar
  42. 42.
    I. Gedrovica, D. Karklina, Int. J. Biol. Biomol. Food Biotechnl. Eng. 6(7), 524–527 (2012)Google Scholar
  43. 43.
    R.B. Ervin, C.Y. Wang, J.D. Wright, J. Kennedy-Stephenson, U.S. Department of Health and Human Services, Adv. Data 341, 1–6 (2004)Google Scholar
  44. 44.
    İ. Saldamlı, F. Sağlam, in Food Chemistry (in Turkish), 3rd edn. By İ. Saldamlı (Hacettepe University Publications, Ankara, Turkey, 2007), pp. 365–423Google Scholar
  45. 45.
    U.C. Gupta, S.C. Gupta, Pedosphere 24(1), 13–38 (2014)CrossRefGoogle Scholar
  46. 46.
    A. Baysal, Nutrition (in Turkish) (Hatiboğlu Publications: 93, Ankara, 2006), pp. 111–151Google Scholar
  47. 47.
    M. Metin, in Milk technology, composition and processing of milk (in Turkish) (Faculty of Engineering, Publication No: 33. Ege University, Izmir, 2001), pp. 265–272.Google Scholar
  48. 48.
    M.S. Islam, M. Yoshimoto, O. Yamakawa, J. Food Sci. 68(1), 111–116 (2003)CrossRefGoogle Scholar
  49. 49.
    N.A. Afoakwah, Y. Dong, Y. Zhao, Z. Xiong, J. Owusu, Y. Wang, J. Zhang, LWT-Food. Sci. Technol 64, 74–81 (2015)CrossRefGoogle Scholar
  50. 50.
    A. Panghal, B.S. Khatkar, D.N. Yadav, N. Chhikara, Cereal Chem. 96, 86–94 (2019)CrossRefGoogle Scholar
  51. 51.
    D. Karklina, I. Gedrovica, M. Reca, M. Kronberga, Proc. Latvian Acad. Sci. Sect. B 66(3), 113–116 (2012)Google Scholar
  52. 52.
    A.-S. Hager, L.A.M. Ryan, C. Schwab, M.G. Ganzle, J.V. O’Doherty, E.K. Arendt, Eur. Food Res. Technol. 232, 405–413 (2011)CrossRefGoogle Scholar
  53. 53.
    A. Diaz, R. Bomben, C. Dini, S.Z. Vina, M.A. Garcia, M. Ponzi, N. Comelli, LWT- Food Sci. Technol. 108, 361–369 (2019)CrossRefGoogle Scholar
  54. 54.
    B.K. Tiwari, C.S. Brennan, R. Jaganmohan, A. Surabi, K. Alagusundaram, LWT-Food. Sci. Technol. 44, 1533–1537 (2011)CrossRefGoogle Scholar
  55. 55.
    Z. Kohajdová, J. Karovičová, M. Magala, Acta Chim. Slov. 4(2), 98–107 (2011)Google Scholar
  56. 56.
    M. Maskan, A. Altan, Advances in Food Extrusion Technology (CRC Press, Taylor and Francis group, Florida, USA, 2012), p. 319Google Scholar
  57. 57.
    H. Mamat, S.E. Hill, J. Food. Sci. Technol. 51(9), 1998–2005 (2014)PubMedCrossRefGoogle Scholar
  58. 58.
    Z.S. Ahmed, S.S. Abozed, J. Adv. Res. 6, 79–87 (2015)PubMedCrossRefGoogle Scholar
  59. 59.
    O. Oupathumpanont, U. Chitravimol, Int. J. Home Econ. 9(2), 118–126 (2016)Google Scholar
  60. 60.
    Z. Goranova, M. Baeva, S. Stankov, G. Zsivanovits, J. Food Phys. 29, 70–79 (2016)Google Scholar
  61. 61.
    I. Celik, F. Isik, O. Gursoy, Y. Yilmaz, J. Food Process. Pres. 37, 483–488 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of EngineeringPamukkale UniversityDenizliTurkey

Personalised recommendations