Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2722–2728 | Cite as

Automated pre-column derivatization with 9-xanthydrol for the determination of ethyl carbamate in food matrices by high performance liquid chromatography with fluorimetric detection

  • Daniel Antonio Aguilera Ojeda
  • Kazimierz Wrobel
  • Alma Rosa Corrales Escobosa
  • Luis Fernando Mejia Diaz
  • Katarzyna WrobelEmail author
Original Paper
  • 35 Downloads

Abstract

In this work, derivatization of ethyl carbamate (EC) with 9-xanthydrol prior to liquid chromatography with fluorimetric detection (HPLC-FLD) was revisited, focusing on refining the reaction conditions and on automation. Perchloric acid was used for sample acidification and a sequence of operations was defined to perform the reaction in the autosampler needle. Chromatographic separation together with automated pre-column derivatization accounted for 18.5 min analytical run. FLD photomultiplier gain was changed in the elution region of analyte to enhance sensitivity. The instrumental detection limit (DL) was 0.52 μg L−1; after suitable sample pretreatment, the proposed procedure was applied for EC determination in liquors, red wines and soy sauces (method DLs: 0.59; 0.96; 0.65 μg L−1, respectively). Recoveries obtained after standard addition were in the range 101–103%, 71–79% and 89–93%, respectively. Standard addition method was used for EC quantification in several samples; the concentrations ranged from not detected up to 40.7 μg L−1 in liquors, 25.9 μg L−1 in wines and 7.18 μg L−1 in soy sauces.

Graphic Abstract

Keywords

Ethyl carbamate 9-xanthydrol High performance liquid chromatography Fluorimetric detection Wine Tequila Soy sauce 

Notes

Acknowledgements

The financial support from National Council of Science and Technology, Mexico (CONACYT, Project 253879), and from University of Guanajuato (Grant 051/2018), is gratefully acknowledged.

References

  1. 1.
    Z. Jiao, Y. Dong, Q. Chen, Comp. Rev. Food Sci. Food Safe. 13, 611–626 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Pflaum, T. Hausler, C. Baumung, S. Ackermann, T. Kuballa, J. Rehm, D.W. Lachenmeier, Arch. Toxicol. 90, 2349–2367 (2016)CrossRefGoogle Scholar
  3. 3.
    European Food Safety Authority, EFSA J. 5, 1–44 (2007)Google Scholar
  4. 4.
    Ethyl Carbamate in Local Fermented Foods, Risk Assessment Studies Report No. 39, Centre for Food Safety Food and Environmental Hygiene Department (2009) https://www.cfs.gov.hk/english/programme/programme_rafs/files/RA39_EC_in_food_e.pdf.
  5. 5.
    Q. Xia, C. Yang, C. Wu, R. Zhou, Y. Li, Food Control 84, 499–512 (2018)CrossRefGoogle Scholar
  6. 6.
    P. Herbert, L. Santos, M. Bastos, P. Barros, A. Alves, Food Chem. Toxicol. 67, 1616–1620 (2002)Google Scholar
  7. 7.
    I.M. Valente, R.M. Ramos, L.M. Gonçalves, J.A. Rodrigues, Anal. Methods 6, 9136–9141 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, G. Liu, Y. Zhang, Q. Gao, D. Wang, H. Liu, J. Agric. Food Chem. 62, 2797–2802 (2014)CrossRefGoogle Scholar
  9. 9.
    A.M. de Resende Machado, M. das Graças Cardoso, A.A. Saczk, J.P. dos Anjos, L.M. Zacaroni, H.S. Dórea, D.L. Nelson, Food Chem. 138, 1233–1238 (2013)CrossRefGoogle Scholar
  10. 10.
    R.R. Madrera, B.S. Valles, Food Control 20, 139–143 (2009)CrossRefGoogle Scholar
  11. 11.
    M.J. Ruiz-Bejarano, R. Castro-Mejías, M.C. Rodríguez-Dodero, C. García-Barroso, Austral. J. Grape Wine Res. 21, 396–403 (2015)CrossRefGoogle Scholar
  12. 12.
    G. Li, Q. Zhong, D. Wang, X. Zhang, H. Gao, S. Shen, Food Control 56, 169–176 (2015)CrossRefGoogle Scholar
  13. 13.
    W.D. Santiago, M. Das Graças Cardoso, F.C. Duarte, A.A. Saczk, D.L. Nelson, J. Inst. Brewing, 120, 507–511 (2014)Google Scholar
  14. 14.
    K. Zhou, Y. Liu, W.Q. Li, G.L. Liu, N. Wei, Y.M. Sun, W.D. Bai, Z.L. Xu, Food Anal. Methods 10, 3856–3865 (2017)CrossRefGoogle Scholar
  15. 15.
    Z. Ajtony, N. Szoboszlai, L. Bencs, E. Viszket, V.G. Mihucz, Food Chem. 141, 1301–1305 (2013)CrossRefGoogle Scholar
  16. 16.
    D.W. Lachenmeier, F. Kanteres, T. Kuballa, M.G. López, J. Rehm, Int. J. Environ. Res. Public Health 6, 349–360 (2009)CrossRefGoogle Scholar
  17. 17.
    S.K. Park, C.T. Kim, J.W. Lee, O.H. Jhee, A.S. Om, J.S. Kang, T.W. Moon, Food Control 18, 975–982 (2007)CrossRefGoogle Scholar
  18. 18.
    Q. Xia, H. Yuan, C. Wu, J. Zheng, S. Zhang, C. Shen, B. Yi, R. Zhou, J. Food Sci. 79, T1854–T1860 (2014)CrossRefGoogle Scholar
  19. 19.
    J.M. Leca, V. Pereira, A.C. Pereira, J.C. Marques, Anal. Chim. Acta 811, 29–35 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Ryu, B. Choi, N. Kim, E. Koh, Food Chem. 211, 770–775 (2016)CrossRefGoogle Scholar
  21. 21.
    ICH Harmonized Tripartite Guideline. Validation of analytical procedures: text and methodology (Q2/R1), (2012) hhtp://www.ish.org/fileadmin/Public_Web_Site/ICH_Products /Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf
  22. 22.
    Y.K. Le Kim, E. Koh, H.J. Chung, H. Kwon, Food Addit. Contam. 17, 469–475 (2000)CrossRefGoogle Scholar
  23. 23.
    P. Alberts, M.A. Stander, A. De Villiers, Food Addit. Contam. 28, 826–839 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Hasnip, C. Crews, N. Potter, J. Christy, D. Chan, T. Bondu, W. Matthews, B. Walters, K. Patel, J. Agric. Food Chem. 55, 2755–2759 (2007)CrossRefGoogle Scholar
  25. 25.
    I.C. Nóbrega, G.E. Pereira, M. Silva, E.V. Pereira, M.M. Medeiros, D.L. Telles, D.W. Lachenmeier, Food Chem. 177, 23–28 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Fauhl, R. Catsburg, R. Wittkowski, Food Chem. 48, 313–316 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of GuanajuatoGuanajuatoMexico

Personalised recommendations