Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2686–2695 | Cite as

Chemical constituents of Porodaedalea pini mushroom with cytotoxic, antioxidant and anticholinesterase activities

  • Ebru Deveci
  • Gülsen Tel-Çayan
  • Mehmet Emin DuruEmail author
  • Mehmet Öztürk
Original Paper

Abstract

Chemical investigation of Porodaedalea pini led to the isolation of campesterol (1), ergosta-7,24(28)-dien-3β-ol (2), dioctyl phthalate (3), ergosterol peroxide (4), pinoresinol (5) and 4-(3,4-dihydroxyphenyl)but-3-en-2-one (6). Compounds 1, 3, and 6 were isolated for the first time from P. pini. The structures of compounds were elucidated by IR, 1D-NMR, and 2D-NMR techniques. Antioxidant, anticholinesterase, and cytotoxic activities against breast cancer cell (MCF-7) were tested. The highest antioxidant and cytotoxic activity were found in the methanol extract. Also, compound 6 was found to be active in all antioxidant tests. The hexane extract (38.15 ± 1.50%) exhibited the highest activity against AChE enzyme while the acetone extract (48.75 ± 0.13%) against BChE enzyme. Moreover, among isolated compounds, compound 5 was found to have the highest cytotoxic (IC50: 21.08 ± 1.01 µg/mL), AChE (13.73 ± 0.85%) and BChE (80.02 ± 0.73%) inhibitory activities. The phenolic profile was analyzed by HPLC–DAD and p-hydroxybenzoic acid (32.40 µg/g) was identified as a major compound.

Keywords

Porodaedalea pini Isolation Antioxidant activity Cytotoxic activity Enzyme inhibitory activity Breast cancer 

Abbreviations

ABTS

2,2′-azino bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt

AChE

Acetylcholinesterase

BChE

Butyrylcholinesterase

BHA

Butylated hydroxyl anisole

COSY

Correlation spectroscopy

CUPRAC

Cupric reducing antioxidant capacity

DPPH

1,1-diphenyl-2-picrylhydrazyl

EDTA

Ethylenediaminetetraacetic acid

EtOAc

Ethyl acetate

EtOH

Ethanol

FT-IR

Fourier-transform infrared spectroscopy

HMBC

Heteronuclear multiple bond correlation

HPLC–DAD

High performance liquid chromatography-diode array detection

HSQC

Heteronuclear single quantum coherence

IC50

Half-maximal inhibitory concentration

NMR

Nuclear magnetic resonance

TLC

Thin layer chromatography

Notes

Acknowledgements

This study is a part of E.D.’s Ph.D. thesis. The authors would like to thank the Scientific and Technological Research Council of Turkey for financial support under project TUBITAK-114Z550. The Mugla Sitki Kocman University Research Fund is also acknowledged under project number (MUBAP 15/238).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

11694_2019_189_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 1999 kb)

References

  1. 1.
    M. Öztürk, G. Tel-Cayan, A. Muhammad, P. Terzioglu, M.E. Duru, Mushrooms: a source of exciting bioactive compounds, in Studies in Natural Product Chemistry, vol. 45, ed. by F.R.S. Atta-ur-Rahman (Elsevier, Amsterdam, 2015), pp. 363–456Google Scholar
  2. 2.
    I.C. Ferreira, L. Barros, R.M. Abreu, Curr. Med. Chem. 16, 1543–1560 (2009)PubMedGoogle Scholar
  3. 3.
    H.C. Lo, S.P. Wasser, Int. J. Med. Mushrooms 13, 401–426 (2011)PubMedGoogle Scholar
  4. 4.
    M.J. Alves, I.C. Ferreira, J. Dias, V. Teixeira, A. Martins, M. Pintado, Planta Med. 78, 1707–1718 (2012)PubMedGoogle Scholar
  5. 5.
    L. Ren, C. Perera, Y. Hemar, Food Funct. 3, 1118–1130 (2012)PubMedGoogle Scholar
  6. 6.
    D. Gunawardena, K. Shanmugam, M. Low, L. Bennett, S. Govindaraghavan, R. Head, L. Ooi, G. Münch, Eur. J. Nutr. 52, 1287–1305 (2013)Google Scholar
  7. 7.
    P. Seephonkai, S. Samchai, A. Thongsom, S. Sunaart, B. Kiemsanmuang, B. Chakuton, Chin. J. Nat. Med. 9(6), 0441–0445 (2011)Google Scholar
  8. 8.
    X. Wu, S. Lin, C. Zhu, Z. Yue, Y. Yu, F. Zhao, B. Liu, J. Dai, J. Shi, J. Nat. Prod. 73(7), 1294–1300 (2010)PubMedGoogle Scholar
  9. 9.
    A.R. Song, X.L. Sun, C. Kong, C. Zhao, D. Qin, F. Huang, S. Yang, Arch. Virol. 159, 753–760 (2014)PubMedGoogle Scholar
  10. 10.
    J. Wang, F. Hu, Y. Luo, H. Luo, N. Huang, F. Cheng, Z. Deng, W. Deng, K. Zou, Fitoterapia 95, 93–101 (2014)PubMedGoogle Scholar
  11. 11.
    J.J. Pei, Z.B. Wang, H.L. Ma, J.K. Yan, Carbohydr. Polym. 115, 472–477 (2015)PubMedGoogle Scholar
  12. 12.
    W.A. Ayer, D.J. Muir, P. Chakravarty, Phytochemistry 42, 1321–1324 (1996)Google Scholar
  13. 13.
    F. Zhu, W. Lu, W. Feng, Z. Song, C. Wang, X. Chen, Int. J. Org. Chem. 7, 25–33 (2017)Google Scholar
  14. 14.
    S.C. Jeong, S.P. Cho, B.K. Yang, Y.T. Jeong, K.S. Ra, C.H. Song, J. Microbiol. Biotechnol. 14(1), 15–21 (2004)Google Scholar
  15. 15.
    S.M. Lee, S.M. Kim, Y.H. Lee, W.J. Kim, J.K. Park, Y. Park, W.J. Jang, H.D. Shin, A. Synytsya, Macromol. Res. 18, 602–609 (2010)Google Scholar
  16. 16.
    A.J. Liu, H.C. Sun, Y. Chen, W.H. Wang, C.H. Liu, Y.M. Wang, Adv. Mater. Res. 936, 728–733 (2014)Google Scholar
  17. 17.
    P. Jiang, L. Yuan, D. Cai, L. Jiao, L. Zhang, Carbohydr. Polym. 117, 600–604 (2015)PubMedGoogle Scholar
  18. 18.
    P. Jiang, L. Yuan, G. Huang, X. Wang, X. Li, L. Jiao, L. Zhang, Int. J. Biol. Macromol. 93, 566–571 (2016)PubMedGoogle Scholar
  19. 19.
    K. Slinkard, V.L. Singleton, Am. J. Enol. Viticult. 28, 49–55 (1997)Google Scholar
  20. 20.
    L. Barros, M. Duenas, I.C.F.R. Ferreira, P. Baptista, C. Santos-Buelga, Food Chem. Toxicol. 47, 1076–1079 (2009)PubMedGoogle Scholar
  21. 21.
    G. Tel-Çayan, M. Öztürk, M.E. Duru, M. Rehman, A. Adhikari, A. Türkoglu, M.I. Choudhary, Ind. Crops Prod. 76, 749–775 (2015)Google Scholar
  22. 22.
    E. Deveci, G. Tel-Çayan, M.E. Duru, Int. J. Food Prop. 21, 771–783 (2018)Google Scholar
  23. 23.
    G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherston, Biochem. Pharmacol. 7, 88–95 (1961)Google Scholar
  24. 24.
    T. Masuda, D. Yamashita, Y. Takeda, S. Yonemori, Biosci. Biotechnol. Biochem. 69, 197–201 (2005)PubMedGoogle Scholar
  25. 25.
    H. Kamurthy, S. Ch, N.S. Rao, M. Sudhakar, Asian J. Pharm. Clin. Res. 6(1), 149–152 (2013)Google Scholar
  26. 26.
    Y.J. Hong, A.R. Jang, K.S. Yang, Nat. Prod. Sci. 19(3), 258–262 (2013)Google Scholar
  27. 27.
    Y.J. Hong, A.R. Jang, H.J. Jang, K.S. Yang, Nat. Prod. Sci. 18(3), 147–152 (2012)Google Scholar
  28. 28.
    X.L. Ouyang, L.X. Wei, H.S. Wang, Y.M. Pan, S. Afr. J. Bot. 98, 162–166 (2015)Google Scholar
  29. 29.
    K. Ohmura, T. Miyase, A. Ueno, Phytochemistry 28(7), 1919–1924 (1989)Google Scholar
  30. 30.
    A. Lourenço, A.M. Lobo, B. Rodriguez, M.L. Jimeno, Phytochemistry 43, 617–620 (1996)Google Scholar
  31. 31.
    H.V.K. Wangun, C. Hertweck, Eur. J. Org. Chem. 2007, 3292–3295 (2007)Google Scholar
  32. 32.
    H.J. Jang, K.S. Yang, Arch. Pharm. Res. 34, 913–917 (2011)PubMedGoogle Scholar
  33. 33.
    R. Manuja, S. Sachdeva, A. Jain, J. Chaudhary, Int. J. Pharm. Sci. Rev. Res. 22(2), 109–115 (2013)Google Scholar
  34. 34.
    M.Y. Kim, P. Seguin, J.K. Ahn, J.J. Kim, S.C. Chun, E.H. Kim, S.H. Seo, E.Y. Kang, S.L. Kim, Y.J. Park, H.M. Ro, I.M. Chung, J. Agric. Food Chem. 56, 7265–7270 (2008)PubMedGoogle Scholar
  35. 35.
    S. Mo, S. Wang, G. Zhou, Y. Yang, Y. Li, X. Chen, J. Nat. Prod. 67, 823–828 (2004)PubMedGoogle Scholar
  36. 36.
    A.M. Aboul-Enein, S.M.M. Shanab, E.A. Shalaby, M.M. Zahran, D.A. Lightfoot, H.A. El-Shemy, BMC Complement Altern. Med. 14, 397 (2014)PubMedPubMedCentralGoogle Scholar
  37. 37.
    D.Q. Li, D. Wang, L. Zhou, L.Z. Li, Q.B. Liu, Y.Y. Wu, J.Y. Yang, S.J. Song, C.F. Wu, J. Asian Nat. Prod. Res. 19(5), 519–527 (2017)PubMedGoogle Scholar
  38. 38.
    L.B. Vinh, N.T.M. Nguyet, S.Y. Yang, J.H. Kim, L.T. Vien, P.T.T. Huong, N.V. Thanh, N.X. Cuong, N.H. Nam, C.V. Minh, I. Hwang, Y.H. Kim, Nat. Prod. Res. 9, 1–7 (2017)Google Scholar
  39. 39.
    J.W. Li, S.D. Ding, X.L. Ding, Process Biochem. 40, 3607–3613 (2005)Google Scholar
  40. 40.
    I.-C. Jang, E.-K. Jo, S.-M. Bae, M.-S. Bae, H.-J. Lee, E. Park, H.-G. Yuk, G.-H. Ahn, S.-C. Lee, Food Sci. Technol. Res. 16, 577–584 (2010)Google Scholar
  41. 41.
    B.S. Hwang, I.K. Lee, B.S. Yun, J. Antibiot. 69(2), 108–110 (2016)PubMedGoogle Scholar
  42. 42.
    E.R. Eom, J.B. Weon, Y.S. Jung, G.H. Ryu, W.S. Yang, C.J. Ma, Arch. Pharm. Res. 40, 704–712 (2017)PubMedGoogle Scholar
  43. 43.
    F.G. Koçancı, B. Aslım, Manas J. Agric. Life Sci. 6(1), 19–35 (2016)Google Scholar
  44. 44.
    I.A. Owokotomo, O. Ekundayo, T.G. Abayomi, A.V. Chukwuka, Toxicol. Rep. 2, 850–857 (2015)PubMedPubMedCentralGoogle Scholar
  45. 45.
    K.H. Im, T.K. Nguyen, J.K. Kim, J.H. Choi, T.S. Lee, Int. J. Med. Mushrooms. 18(11), 1011–1022 (2016)PubMedGoogle Scholar
  46. 46.
    D. Szwajgier, Ann. Agric. Environ. Med. 22, 690–694 (2015)PubMedGoogle Scholar
  47. 47.
    D. Khan, H.U. Khan, F. Khan, S. Khan, S. Badshah, A.S. Khan, A. Samad, F. Ali, I. Khan, N. Muhammad, PLoS ONE 9(4), e94952 (2014)PubMedPubMedCentralGoogle Scholar
  48. 48.
    S. Parveen, M. Saleem, N. Riaz, M. Ashraf, Q. Ain, M.F. Nisar, A. Jabbar, J. Asian Nat. Prod. Res. 18(3), 222–231 (2016)PubMedGoogle Scholar
  49. 49.
    H.X. Nguyen, N.T. Nguyen, M.H.K. Nguyen, T.H. Le, T.N.V. Do, T.M. Hung, M.T.T. Nguyen, Chem. Cent. J. 10, 2 (2016)PubMedPubMedCentralGoogle Scholar
  50. 50.
    J. Chompoo, A. Upadhyay, S. Gima, M. Fukuta, S. Tawata, Molecules 17, 6237–6248 (2012)PubMedPubMedCentralGoogle Scholar
  51. 51.
    A.M.A. Morgan, M.N. Jeon, M.H. Jeong, S.Y. Yang, Y.H. Kim, Nat. Prod. Sci. 22(2), 111–116 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Department of Chemistry and Chemical Processing Technologies, Muğla Vocational SchoolMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations