Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2637–2643 | Cite as

Simultaneous detection of ofloxacin and lomefloxacin in milk by visualized microplate array

  • Zhoumin LiEmail author
  • Kai’an Yao
  • Xin’ai Li
Original Paper
  • 36 Downloads

Abstract

Analytical method for simultaneous detection of ofloxacin and lomefloxacin in milk by visualized microarray immunoassay without the need of time-consuming or complex pre-treatment steps was reported. A 96-well microplate was used as solid support, in which ofloxacin antigen and lomefloxacin antigen were immobilized, respectively. After immobilization, a mixture of standard solutions containing the analytes or samples and relevant antibodies were added to the array reaction areas, then added silver nanoparticles (AgNPs) labeled secondary antibody (goat anti-mouse IgG). Silver enhancement technique was applied to amplify the detection signals, which produced black image on array spots visible with naked eyes. The signals were detected with a microarray scanner; therefore the analyte residues could detect quantitatively by standard calibration curve. Ofloxacin and lomefloxacin dynamic range were all from 0.05 ng/mL to 12.8 ng/mL. The calibration curve of ofloxacin was calculated as: y = − 0.3446x + 0.4287, r = 0.9849. The calibration curve of lomefloxacin was calculated as: y = − 0.3055x + 0.4797, r = 0.9927. The spike recovery were within 80–130%, and RSD were less than 15%. The limits of detection (LOD) were estimated to be 0.24 ng/mL (ofloxacin) and 0.35 ng/mL (lomefloxacin) (n = 3, 3SD).

Keywords

Visualized detection Silver enhancement Quinolones Ofloxacin Lomefloxacin 

Notes

Acknowledgements

We acknowledge Jiangsu Provincial University Natural Science Fund (18KJD150003) and State Key Liboratory of Analytical Chemistry for Life Science (SKLACLS1918).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest, financial or therwise.

References

  1. 1.
    R. Emamian, M. Ebrahimi, H. Karimi-Maleh, J. Electrochem. Soc. 165, B762 (2018)CrossRefGoogle Scholar
  2. 2.
    V. Gupta, H. Karimi-Maleh, S. Agarwal, F. Karimi, M. Bijad, M. Farsi, S. Shahidi, Sensors 18, 2817 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Cheraghi, M.A. Taher, H. Karimi-Maleh, J. Food Compos. Anal. 62, 254 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Cháfer-Pericás, Á. Maquieira, R. Puchades, J. Miralles, A. Moreno, Food Control 22, 993 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Bijad, H.K. Maleh, M. Farsi, S.A. Shahidi, J. Food Meas. Charact. 12, 634 (2018)CrossRefGoogle Scholar
  6. 6.
    B. Zhang, J. Zhao, B. Sha, M. Xian, Anal. Methods 4, 3187 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, Y. Ni, L. Wang, J. Ma, Z. Zhang, Biomed. Chromatogr. 29, 1267 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Wang, C. Feng, H. Zhang, Y. Zhang, L. Zhang, J. Wang, Anal. Methods 7, 1046 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Phonkeng, R. Burakham, Chromatographia 75, 233 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Rambla-Alegre, M.A. Collado-Sánchez, J. Esteve-Romero, S. Carda-Broch, Anal. Bioanal. Chem. 400, 1303 (2011)CrossRefGoogle Scholar
  11. 11.
    W. Fan, M. He, X. Wu, B. Chen, B. Hu, J. Chromatogr. A 1418, 36 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, C. Wang, L. Yang, W. Zhang, J. Lin, C. Li, J. Chromatogr. B 1064, 68 (2017)CrossRefGoogle Scholar
  13. 13.
    K. Yao, W. Zhang, L. Yang, J. Gong, L. Li, T. Jin, C. Li, J. Chromatogr. B 1003, 67 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Dorival-García, A. Junza, A. Zafra-Gomez, D. Barron, A. Navalon, Food Control 60, 382 (2016)CrossRefGoogle Scholar
  15. 15.
    M.M. Aguilera-Luiz, R. Romero-González, P. Plaza-Bolaños, J.L.M. Vidal, A. Garrido Frenich, J. Agr. Food Chem. 61, 829 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Tian, J. Wang, Y. Zhang, S. Li, J. Jiang, D. Tao, J. Chromatogr. B 1033, 172 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Junza, N. Dorival-García, A. Zafra-Gómez, D. Barrón, J. Chromatogr. A 1356, 10 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Lombardo-Agüí, A.M. García-Campana, L. Gámiz-Gracia, C. Cruces-Blanco, Talanta 93, 193 (2012)CrossRefGoogle Scholar
  19. 19.
    N. Byzova, N. Smirnova, A. Zherdev, S. Eremin, I. Shanin, H. Lei, Y. Sun, B. Dzantiev, Talanta 119, 125 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Wang, X. Li, T. Peng, Z. Wang, K. Wen, H. Jiang, Food Control 77, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Peng, L. Liu, L. Xu, S. Song, H. Kuang, G. Cui, C. Xu, Nano. Res. 10, 108 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Wu, S. Guo, Q. Dong, Y. Song, Food Anal. Methods 9, 2807 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Zhu, J. Li, Z. Wang, H. Jiang, R.C. Beier, F. Xu, J. Shen, S. Ding, Biosens. Bioelectron. 26, 2716 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Li, P. Li, X. Luo, Z. Hao, Z. Wang, J. Shen, X. Cao, S. Zhang, Anal. Bioanal. Chem. 405, 3307 (2013)CrossRefGoogle Scholar
  25. 25.
    R.A. Tufa, D.G. Pinacho, N. Pascual, M. Granados, R. Companyo, M.P. Marco, Food Control 57, 195 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Leivo, U. Lamminmäki, T. Lövgren, M. Vehniäinen, J. Agric. Food Chem. 61, 11981 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Leivo, C. Chappuis, U. Lamminmäki, T. Lövgren, M. Vehniäinen, Anal. Biochem. 409, 14 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Zeng, J. Chen, C. Zhang, X. Huang, Y. Sun, Z. Xu, A.H. Lei, Anal. Chem. 88, 3909 (2016)CrossRefGoogle Scholar
  29. 29.
    W. Jiang, N. Beloglazov, Z. Wang, H. Jiang, K. Wen, S. Saeger, P. Luo, Y. Wu, J. Shen, Biosens. Bioelectron. 66, 124 (2015)CrossRefGoogle Scholar
  30. 30.
    L. Sun, L. Mei, H. Yang, K. Zhao, J. Li, D. Jiang, M. Li, D. Anping, Food Anal. Methods 9, 342 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanjing University Jinling CollegeNanjingChina

Personalised recommendations