Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 4, pp 2626–2636 | Cite as

Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation

  • Zahra Zareie
  • Farideh Tabatabaei YazdiEmail author
  • Seyed Ali Mortazavi
Original Paper
  • 58 Downloads

Abstract

Gamma-aminobutyric acid (GABA) is an active bio-compound with versatile physiological functions and, therefore, considerable attention is given to developing GABA-enriched functional foods. In this study, central composite design was used to optimize the fermentation conditions to obtain the highest GABA yield by Lactobacillus brevis. The optimal conditions of GABA production (1473.44 ppm) included 5% soy protein isolate, 3% inulin, and 96 h fermenting time at 37 °C. GABA-rich fermented solution (GABA-EFS) under optimal conditions had an appropriate emulsifying activity and water/oil holding capacity. Also, the reducing power assay revealed that GABA-EFS has electron donor groups with the ability to terminate the free radical chain reactions. Minimum inhibitory concentration results showed that Candida albicans was the most sensitive microorganism; whilst, Staphylococcus aureus and Listeria innocua were the most resistant bacteria towards GABA-EFS. In addition, GABA production was confirmed by pre-staining thin layer chromatography and fourier transform infrared spectroscopy. The results suggested that the GABA-EFS could be applied in the food industry as a functional product.

Keywords

Gamma-aminobutyric acid (GABA) Optimization Soy protein Inulin Lactobacillus brevis Functional properties 

Notes

Acknowledgements

The authors of this paper acknowledge the support of Ferdowsi University of Mashhad (FUM) through Project 46386.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

References

  1. 1.
    L. Day, R.B. Seymour, K.F. Pitts, I. Konczak, L. Lundin, Incorporation of functional ingredients into foods. Trends Food Sci. Technol. 20(9), 388–395 (2009)Google Scholar
  2. 2.
    S.H. Al-Sheraji, A. Ismail, M.Y. Manap, S. Mustafa, R.M. Yusof, F.A. Hassan, Prebiotics as functional foods: a review. J. Funct. Foods 5(4), 1542–1553 (2013)Google Scholar
  3. 3.
    J.M. Villegas, L. Brown, G.S. de Giori, E.M. Hebert, Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT-Food Sci. Technol. 67, 22–26 (2016)Google Scholar
  4. 4.
    K. Mahmood, H. Kamilah, A.K. Alias, F. Ariffin, Nutritional and therapeutic potentials of rambutan fruit (Nephelium lappaceum L.) and the by-products: a review. J. Food Meas. Charact. 12, 1556–1571 (2018)Google Scholar
  5. 5.
    K.B. Park, S.H. Oh, Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour. Technol. 98(8), 1675–1679 (2007)PubMedGoogle Scholar
  6. 6.
    R. Dhakal, V.K. Bajpai, K.H. Baek, Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43(4), 1230–1241 (2012)PubMedPubMedCentralGoogle Scholar
  7. 7.
    H. Li, Y. Cao, Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39(5), 1107–1116 (2010)Google Scholar
  8. 8.
    H. Li, T. Qiu, D. Gao, Y. Cao, Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38(5), 1439–1445 (2010)PubMedGoogle Scholar
  9. 9.
    H. Jooyandeh, Soy products as healthy and functional foods. Middle East J. Sci. Res. 7(1), 71–80 (2011)Google Scholar
  10. 10.
    R. Karimi, M.H. Azizi, M. Ghasemlou, M. Vaziri, Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. Carbohydr. Polym. 119, 85–100 (2015)PubMedGoogle Scholar
  11. 11.
    M.A. Mensink, H.W. Frijlink, K. van der Voort Maarschalk, W.L. Hinrichs, Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015)PubMedGoogle Scholar
  12. 12.
    J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, 5th edn. (W H freeman, New York, 2002)Google Scholar
  13. 13.
    H. Li, T. Qiu, Y. Cao, J. Yang, Z. Huang, Pre-staining paper chromatography method for quantification of γ-aminobutyric acid. J. Chromatogr. A 1216(25), 5057–5060 (2009)PubMedGoogle Scholar
  14. 14.
    N.T. Hoyle, J.H. Merritt, Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food Sci. 59(1), 76–79 (1994)Google Scholar
  15. 15.
    J. Adler-Nissen, Enzymic Hydrolysis of Food Proteins, 1st edn. (Elsevier Applied Science, London, 1986), pp. 110–169Google Scholar
  16. 16.
    B.A. Behbahani, F. Shahidi, F.T. Yazdi, S.A. Mortazavi, M. Mohebbi, Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J. Food Meas. Charact. 11(2), 847–863 (2017)Google Scholar
  17. 17.
    B.A. Behbahani, F. Shahidi, F.T. Yazdi, S.A. Mortazavi, M. Mohebbi, Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 94, 515–526 (2017)PubMedGoogle Scholar
  18. 18.
    M. Noshad, M. Hojjati, B.A. Behbahani, Black Zira essential oil: chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb. Pathog. 116, 153–157 (2018)PubMedGoogle Scholar
  19. 19.
    X. Li, X. Shi, Y. Jin, F. Ding, Y. Du, Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydr. Polym. 91(1), 428–433 (2013)Google Scholar
  20. 20.
    J. Xie, M. Du, M. Shen, T. Wu, L. Lin, Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 270, 243–250 (2019)PubMedGoogle Scholar
  21. 21.
    Q. Deng, L. Wang, F. Wei, B. Xie, F. Huang, W. Huang, J. Shin, Q. Huang, B. Tian, S. Xue, Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chem. 124(4), 1458–1465 (2011)Google Scholar
  22. 22.
    D. Betancur-Ancona, G. Peraza-Mercado, Y. Moguel-Ordonez, S. Fuertes-Blanco, Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chem. 84(2), 287–295 (2004)Google Scholar
  23. 23.
    T.J. Kim, C.H. Sung, Y.J. Kim, B.M. Jung, E.R. Kim, W.S. Choi, H.K. Jung, H.N. Chun, W.J. Kim, S.H. Yoo, Effects of a soaking-fermentation-drying process on the isoflavone and γ-aminobutyric acid contents of soybean. Food Sci. Biotechnol. 16(1), 83–89 (2007)Google Scholar
  24. 24.
    H. Aoki, I. Uda, K. Tagami, Y. Furuya, Y. Endo, K. Fujimoto, The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci. Biotechnol. Biochem. 67(5), 1018–1023 (2003)PubMedGoogle Scholar
  25. 25.
    J.Y. Kim, M.Y. Lee, G.E. Ji, Y.S. Lee, K.T. Hwang, Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130(1), 12–16 (2009)PubMedGoogle Scholar
  26. 26.
    E. Barrett, R.P. Ross, P.W. O’toole, G.F. Fitzgerald, C. Stanton, γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113(2), 411–417 (2012)PubMedGoogle Scholar
  27. 27.
    N. Komatsuzaki, J. Shima, S. Kawamoto, H. Momose, T. Kimura, Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22(6), 497–504 (2005)Google Scholar
  28. 28.
    I. Amadou, G.W. Le, Y.H. Shi, S. Jin, Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum Lp6. Int. J. Food Prop. 14(3), 654–665 (2011)Google Scholar
  29. 29.
    T.Ž. Krunić, N.S. Obradović, M.B. Rakin, Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. (2019).  https://doi.org/10.1016/j.foodchem.2019.04.062 CrossRefPubMedGoogle Scholar
  30. 30.
    B. Alizadeh Behbahani, A.A. Imani Fooladi, Development of a novel edible coating made by Balangu seed mucilage and Feverfew essential oil and investigation of its effect on the shelf life of beef slices during refrigerated storage through intelligent modeling. J. Food Saf. 38, e12443 (2018)Google Scholar
  31. 31.
    A.A. Rushdy, E.Z. Gomaa, Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products. Ann. Microbiol. 63(1), 81–90 (2013)Google Scholar
  32. 32.
    S. Sanjukta, A.K. Rai, Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol. 50, 1–10 (2016)Google Scholar
  33. 33.
    F.C.S. Vasconcellos, A.L. Woiciechowski, V.T. Soccol, D. Mantovani, C.R. Soccol, Antimicrobial and antioxidant properties of-conglycinin and glycinin from soy protein isolate. Int. J. Curr. Microbiol. Appl. Sci. 3(8), 144–157 (2014)Google Scholar
  34. 34.
    M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389–395 (2002)Google Scholar
  35. 35.
    K. Matsuzaki, Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta 1788(8), 1687–1692 (2009)PubMedGoogle Scholar
  36. 36.
    C.F. De Oliveira, A.P.F. Corrêa, D. Coletto, D.J. Daroit, F. Cladera-Olivera, A. Brandelli, Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. J. Food Sci. Technol. 52(5), 2668–2678 (2015)PubMedGoogle Scholar
  37. 37.
    R. Farng, S. Mrha, U.S. Patent No. 7,928,147 (U.S. Patent and Trademark Office, Washington, DC, 2011)Google Scholar
  38. 38.
    X. Wang, G.R. Gibson, Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol. 75(4), 373–380 (1993)PubMedGoogle Scholar
  39. 39.
    M. Mohammadian, A. Madadlou, Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution. Food Hydrocoll. 52, 221–230 (2016)Google Scholar
  40. 40.
    L. Khadidja, C. Asma, B. Mahmoud, E. Meriem, Alginate/gelatin crosslinked system through Maillard reaction: preparation, characterization and biological properties. Polym. Bull. 74(12), 4899–4919 (2017)Google Scholar
  41. 41.
    B. Kong, Y.L. Xiong, Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 54(16), 6059–6068 (2006)PubMedGoogle Scholar
  42. 42.
    Y. Li, B. Jiang, T. Zhang, W. Mu, J. Liu, Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem. 106(2), 444–450 (2008)Google Scholar
  43. 43.
    X. Peng, B. Kong, X. Xia, Q. Liu, Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. Int. Dairy J. 20(5), 360–365 (2010)Google Scholar
  44. 44.
    H.C. Wu, H.M. Chen, C.Y. Shiau, Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36(9–10), 949–957 (2003)Google Scholar
  45. 45.
    N. Cumby, Y. Zhong, M. Naczk, F. Shahidi, Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. 109(1), 144–148 (2008)PubMedGoogle Scholar
  46. 46.
    C.Y. Chang, K.C. Wu, S.H. Chiang, Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chem. 100(4), 1537–1543 (2007)Google Scholar
  47. 47.
    K. Saito, D.H. Jin, T. Ogawa, K. Muramoto, E. Hatakeyama, T. Yasuhara, K. Nokihara, Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51(12), 3668–3674 (2003)PubMedGoogle Scholar
  48. 48.
    J.H. Yang, J.L. Mau, P.T. Ko, L.C. Huang, Antioxidant properties of fermented soybean broth. Food Chem. 71(2), 249–254 (2000)Google Scholar
  49. 49.
    K.N. Pearce, J.E. Kinsella, Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26(3), 716–723 (1978)Google Scholar
  50. 50.
    S. Jung, P.A. Murphy, L.A. Johnson, Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. J. Food Sci. 70(2), C180–C187 (2005)Google Scholar
  51. 51.
    G.A. Gbogouri, M. Linder, J. Fanni, M. Parmentier, Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 69(8), C615–C622 (2004)Google Scholar
  52. 52.
    S. Barbut, Determining Water and Fat Holding. Methods of Testing Protein Functionality (Springer, Berlin, 1999), pp. 186–225Google Scholar
  53. 53.
    A. Achouri, W. Zhang, X. Shiying, Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food Res. Int. 31(9), 617–623 (1998)Google Scholar
  54. 54.
    M.A. Mune Mune, Influence of degree of hydrolysis on the functional properties of cowpea protein hydrolysates. J. Food Process. Preserv. 39(6), 2386–2392 (2015)Google Scholar
  55. 55.
    J. Yu, G. Wang, X. Wang, Y. Xu, S. Chen, X. Wang, L. Jiang, Improving the freeze-thaw stability of soy protein emulsions via combing limited hydrolysis and Maillard-induced glycation. LWT-Food Sci. Technol. 91, 63–69 (2018)Google Scholar
  56. 56.
    M.C. Gómez-Guillén, M.E. López Caballero, A. Alemán, A.L. de Lacey, B. Giménez, P. Montero García, Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin, in Sea By-Products as Real Material: New Ways of Application, ed. by E. Le Bihan (Transworld Research Network Signpost, Kerala, 2010), pp. 89–115Google Scholar
  57. 57.
    A. Barth, Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767(9), 1073–1101 (2007)PubMedGoogle Scholar
  58. 58.
    J. Yu, G. Wang, X. Wang, Y. Xu, S. Chen, X. Wang, L. Jiang, Improving the freeze-thaw stability of soy protein emulsions via combing limited hydrolysis and Maillard-induced glycation. LWT 91, 63–69 (2018)Google Scholar
  59. 59.
    K. Elavarasan, B.A. Shamasundar, F. Badii, N. Howell, Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chem. 206, 210–216 (2016)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zahra Zareie
    • 1
  • Farideh Tabatabaei Yazdi
    • 1
    Email author
  • Seyed Ali Mortazavi
    • 1
  1. 1.Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of Mashhad (FUM)MashhadIran

Personalised recommendations