Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2448–2460 | Cite as

Qualitative and quantitative analyses of phenolic compounds by HPLC–DAD–ESI/MS in Tunisian Pistacia vera L. Leaves unveiled a rich source of phenolic compounds with a significant antioxidant potential

  • Meriem Aouadi
  • M. Teresa Escribano-Bailón
  • Karim Guenni
  • Amel Salhi HannachiEmail author
  • Montserrat Dueñas
Original Paper
  • 17 Downloads

Abstract

The phenolic profile of 11 varieties (male and female) of Tunisian pistachio (Pistacia vera L.) leaves were investigated using HPLC–DAD–ESI/MS. Thirty-six phenolic compounds were identified, belonging to proanthocyanidins, flavonols O-glycosides, and galloyl derivatives, some of these compounds were identified for the first time in P. vera L. Leaves. The leaves are good sources of phenolic compounds, flavonols group was the most abundant in the studied analyze, accounting for 65–74% of the total phenolic compounds. Leaves from Mateur’s variety from El Guettar–Gafsa region were the one that showed the highest concentration of these group compounds as well as for total phenolic compounds. Galloyl derivatives were represented for 16–29% of the total, except for the male Sfaxian variety that presented the highest concentration (10.58 mg/g). The results showed that discriminant analysis applied to the phenolic compounds concentration data differentiates mainly the sex of the varieties and the geographical origin of P. vera leaves. Pistachio leaves samples were grouped by discriminant analysis into three groups depending on the sex varieties and geographical origin. The extract of pistachio leaves also showed substantial antioxidant activity, which can be attributed to their phenolic contents. These results support that Pistachio leaves could be exploited to obtain a promising source of new promising bioactive compounds.

Keywords

Pistacia vera L. Phenolic compounds HPLC–DAD–ESI/MS Antioxidant activity FRAP assay ABTS/persulphate assay 

Notes

Acknowledgements

Tunisian Ministry of Higher Education and Scientific Research (Project LR99ES12) provided financial support for this research work with collaboration with Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D. Parfitt, M.L. Badenes, Proc. Natl Acad. Sci. USA 94, 7987–7992 (1997)CrossRefGoogle Scholar
  2. 2.
    B. Benmahioul, K. Bouâmama, M. Kaïd-Harche, F. Daguin, Acta Bot. Malacit. 87, 87–94 (2010)Google Scholar
  3. 3.
    J.J. Rodriguez-Bencomo, H. Kelebek, A.S. Sonmezdag, L.M. Rodriguez-Alcala, J. Fontecha, S. Selli, J. Agric. Food Chem. 63, 7830–7839 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Ghrab, F. Zribi, A. Chelli-Chaabouni, H. Gouta, M. Ben Mimoun, Options Méditerr. 94, 221–228 (2010)Google Scholar
  5. 5.
    FAO, FAO STAT Data Base, 2016 (Food and Agriculture Organization, 2016). https://faostat.fao.org/
  6. 6.
    J. Hormaza, A. Wünsch, in Pistachio. Genome Mapping and Molecular Breeding in Plants, ed. by C. Kole (Fruits and Nuts, 2007), pp. 243–251Google Scholar
  7. 7.
    A. Villar, M.J. Sanz, M. Paya, Int. J. Crude Drug Res. 25, 1–3 (1987)CrossRefGoogle Scholar
  8. 8.
    Z. Ben Ahmed, M. Yousfi, J. Viaene, B. Dejaegher, K. Demeyer, D. Mangelings, Y.V. Heyden, Microchem. J. 128, 208–217 (2016)Google Scholar
  9. 9.
    C. Mehenni, D. Atmani-Kilani, S. Dumarçay, D. Perrin, P. Gérardin, D. Atmani, J. Food Drug Anal. 24, 653–669 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Hosseinzadeh, S.A.S. Tabassi, N.M. Moghadam, M. Rashedinia, S. Mehri, Iran. J. Pharm. Res. 11, 879–887 (2012)Google Scholar
  11. 11.
    A.H. Goli, M. Barzegar, M.A. Sahari, Food Chem. 92, 521–525 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Martorana, T. Arcoraci, L. Rizza, M. Cristani, F.P. Bonina, A. Saija, D. Trombetta, A. Tomaino, Fitoterapia 85, 41–48 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Tomaino, M. Martorana, T. Arcoraci, D. Monteleone, C. Giovinazzo, A. Saija, Biochim. J. 92, 1115–1122 (2010)CrossRefGoogle Scholar
  14. 14.
    B.L. Halvorsen, M.H. Carlsen, K.M. Phillips, S.K. Bohn, K. Holte, D.R. Jacobs, R. Blomhoff, Am. J. Clin. Nutr. 84, 95–135 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Rodríguez-Pérez, R. Quirantes-Pinéa, N. Amessis-Ouchemoukh, K. Madanic, A. Segura-Carreteroa, A. Fernández-Gutierrez, J. Pharm. Biomed. Anal. 77, 167–174 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Romani, P. Pinelli, C. Galardi, N. Mulinacci, M. Tattini, Phytochem. Anal. 13, 79–86 (2002)CrossRefGoogle Scholar
  17. 17.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  18. 18.
    R. Re, N. Pellergrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free. Radic. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  19. 19.
    M.P. Fabani, L. Luna, M.V. Baroni, M.V. Monferran, M. Ighani, A. Tapia, D.A. Wunderlin, G.E. Feresin, J. Funct. Foods 5, 1347–1356 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Erşan, O.G. Üstündağ, R. Carle, R.M. Schweiggert, J. Food Compos. Anal. 64, 103–114 (2017)Google Scholar
  21. 21.
    D. Barreca, G. Laganà, U. Leuzzi, A. Smeriglio, D. Trombetta, E. Bellocco, Food Chem. 196, 493–502 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Khallouki, A. Breuer, E. Meriem. C.M. Ulrich, R.W. Owen, J. Pharm. Biomed. Anal. 134, 310–318 (2016)Google Scholar
  23. 23.
    H. Azaizeh, F. Halahleh, N. Abbas, A. Markovics, H. Muklada, E.D. Ungar, S.Y. Landau, Vet. Parasitol. 191, 44–50 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Zhao, H. Sun, A. Hou, Q. Zhao, T. Wei, W. Xin, Biochim. Biophys. Acta 1725, 103–110 (2005)CrossRefGoogle Scholar
  25. 25.
    F.B. Flores, J. Oosterhaven, M.C. Martinez-Madrid, F. Romojaro, J. Sci. Food Agric. 85, 925–930 (2005)CrossRefGoogle Scholar
  26. 26.
    J.B. Harborne, Annual Proceedings of the Phytochemical Society of Europe 393–408 (1985)Google Scholar
  27. 27.
    G. Dai, C. Andary, L. Mondolot-Cosson, D. Boubals, Phytopathology 85, 149–154 (1995)CrossRefGoogle Scholar
  28. 28.
    S.A. Kawashty, S.A.M. Mosharrafa, M. El-Gibali, N.A.M. Saleh, Biochem. Syst. Ecol. 289, 15–917 (2000)Google Scholar
  29. 29.
    F. Alagna, R. Mariotti, F. Panara, S. Caporali, S. Urbani, G. Veneziani, S. Esposto, A. Taticchi, A. Rosati, R. Rao, G. Perrotta, M. Servili, L. Baldoni, BMC. Plant Biol. 12, 162–180 (2012)Google Scholar
  30. 30.
    V. Cheynier, G. Comte, K.M. Davies, V. Lattanzio, S. Martens, Plant Physiol. Biochem. 72, 1–20 (2013)CrossRefGoogle Scholar
  31. 31.
    V. Schmitzer, M. Mikulic-Petkovsek, F. Stampar, J. Plant Physiol. 170, 1407–1415 (2013)CrossRefGoogle Scholar
  32. 32.
    R. Larbat, C. Paris, J.L. Bot, S. Adamowicz, Plant Sci. 224, 62–73 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Maldonado-Lopez, P. Cuevas-Reyes, G. Sanchez-Montoya, K. Oyama, M. Quesada, Arthropod Plant Interact. 8, 241–251 (2014)Google Scholar
  34. 34.
    L. Zhang, M. Yang, J. Gao, S. Jin, Z. Wu, L. Wu, X. Zhang, J. Plant Physiol. 191, 36–44 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Akbari, M. Farajpour, M. Aalifar, M.S. Hosseini, Nat. Prod. Res. 3, 322–326 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Zaouali, Y.I. BelHadj, R. Jaouadi, C. Messaoud, M. Boussaid, Ind. Crops Prod. 121, 151–159 (2018)CrossRefGoogle Scholar
  37. 37.
    S. Oueslati, R. Ksouri, H. Falleh, A. Pichette, C. Ab-delly, J. Legault, Food Chem. 132, 943–947 (2012)CrossRefGoogle Scholar
  38. 38.
    C. Negro, L. Tommasi, A. Miceli, Bioresour. Technol. 87, 41–44 (2003)CrossRefGoogle Scholar
  39. 39.
    S. Bourgou, R. Ksouri, A. Bellila, I. Skandarani, H. Falleh, B. Marzouk, C. R. Biol. 331, 48–55 (2008)CrossRefGoogle Scholar
  40. 40.
    J.H. Lim, K.J. Park, B.K. Kim, J.W. Jeong, H.J. Kim, Food Chem. 135, 1065–1070 (2012)CrossRefGoogle Scholar
  41. 41.
    Y. Yilmaz, R.T. Tledo, Trends. Food Sci. Technol. 15, 422–433 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Castillo, O. Benavente-Garcia, J. Lorente, M.J. Alcaraz, A. Redondo, A. Ortuno, J.A. Del Rio, J. Agric. Food Chem. 48, 1738–1745 (2000)CrossRefGoogle Scholar
  43. 43.
    D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53, 1841−1856 (2005)CrossRefGoogle Scholar
  44. 44.
    G.T. Hanson, R. Aggeler, D. Oglesbee, M. Cannon, R.A. Capaldi, R.Y. Tsien, J. Biol. Chem. 279, 13044–13053 (2004)CrossRefGoogle Scholar
  45. 45.
    N. Trabelsi, W. Megdiche, R. Ksouri, H. Falleh, S. Oues-lati, S. Bourgou, H. Hajlaoui, C. Abdelly, J. Food Sci. Technol. 43, 632–639 (2010)Google Scholar
  46. 46.
    M. Djeridane, B. Yousfi, D. Nadjemi, P. Boutassouna, N. Stocker, J. Agric. Food Chem. 97, 654–660 (2006)CrossRefGoogle Scholar
  47. 47.
    P. Shah, H.A. Modi, IJRASET 3. ISSN 2321-9653 (2015)Google Scholar
  48. 48.
    F.L. Song, R.Y. Gan, Y. Zhang, Q. Xiao, L. Kuang, H.B. Li, Int. J. Mol. Sci. 11, 2362–2372 (2010)CrossRefGoogle Scholar
  49. 49.
    H. Sies, J. Nutr. 137, 1493–1495 (2007)CrossRefGoogle Scholar
  50. 50.
    S.F. Taghizadeh, Avicenne J. Phytomed. 8, 33–42 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meriem Aouadi
    • 1
  • M. Teresa Escribano-Bailón
    • 2
  • Karim Guenni
    • 1
  • Amel Salhi Hannachi
    • 1
    Email author
  • Montserrat Dueñas
    • 2
  1. 1.Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Polyphenols Research Group (GIP-USAL), Faculty of PharmacyUniversity of SalamancaSalamancaSpain

Personalised recommendations