Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2357–2366 | Cite as

Gurum (Citrullus lanatus var. Colocynthoide) seed: lipid, amino acid, mineral, proximate, volatile compound, sugar, vitamin composition and functional properties

  • Emad KarrarEmail author
  • Sujitraj Sheth
  • Wei Wei
  • Xingguo WangEmail author
Original Paper
  • 28 Downloads

Abstract

Gurum (Citrullus lanatus var. Colocynthoide) seed was evaluated for lipid, amino acid, mineral, proximate, sugar, vitamin composition, volatile compound and functional characteristics in seeking to identify nutritious plant containing a higher amount of nutrients that can be employed in food related industries. The gurum seed was found to be rich in fat (33.05%), crude fiber (26.42%), protein (18.55%), carbohydrates (14.41%), and ash (3.40%) and it has sufficient amino acids content. The gurum seed was found to have a higher content of minerals with potassium 2116.83 mg/100 g among highest followed by sodium 461.23 mg/100 g and magnesium 405.63 mg/100 g. Calcium, zinc, iron, copper and manganese are also present in a significant amount. Gurum seeds could be used as an affluent source of vitamins, mainly B6 and B9 with the amounts of 11.37 and 9.24 mg/100 g respectively, while sucrose constituted 41.5% of the all sugars. Oil of gurum seed has an altitude amount of unsaturated fatty acids, with C18:2 and C18:1 as the major acids, whereas, triglycerides as a major component of lipid classes. The gurum seed showed water absorption 3.46 mL /g and oil absorption 2.39 mL/g. The foaming capacity, stability of foam and emulsifying capacity were 18.5%, 16.55%, and 44.2%, respectively. 49 volatile compounds from the extract of gurum seeds were identified; with organic acids as a prime component. This study has shown the potentials of gurum seed, a by-product with a high nutritional value to provide sufficient economic resourceful raw material alternative to food industrial firms.

Keywords

Gurum (Citrullus lanatus var. Colocynthoide) seeds Nutritional quality Fat composition Functional properties Volatile compounds 

Notes

Acknowledgements

E. K. Greatly acknowledges his doctoral Chinese Government Scholarship (CSC) for his study at Jiangnan University. This study was financially supported through “Department of Program of Science and Technology, Jiangsu Province” (BY2016022-33).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    S. Mallek-Ayadi, N. Bahloul, N. Kechaou, Process. Saf. Environ. 113, 68–77 (2018)CrossRefGoogle Scholar
  2. 2.
    K.L. Nyam, C.P. Tan, O.M. Lai, K. Long, Y.C. Man, LWT Food Sci. Technol. 42, 1396–1403 (2009)CrossRefGoogle Scholar
  3. 3.
    T.A. El-Adawy, K.M. Taha, Food Chem. 74, 47–54 (2001)CrossRefGoogle Scholar
  4. 4.
    E. Karrar, S. Sheth, W.B. Navicha, W. Wei, H. Hassanin, M. Abdalla, X. Wang, J. Food Biochem. 43, e12733 (2018)CrossRefGoogle Scholar
  5. 5.
    Silva, M. A., Albuquerque, T. G., Alves, R. C., Oliveira, M. B. P., Costa, H. S., Trends Food Sci Technol. doi: 10.1016/j.tifs.2018.07.005 (2018)Google Scholar
  6. 6.
    A.A. Mariod, Y.M. Ahmed, B. Matthäus, G. Khaleel, A. Siddig, A.M. Gabra, S.I. Abdelwahab, J. Am. Oil Chem. Soc. 86, 1181 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Ziyada, S. Elhussien, J. Phys. Sci. 19, 69–75 (2008)Google Scholar
  8. 8.
    M.B. Achu, E. Fokou, C. Tchiégang, M. Fotso, F.M. Tchouanguep, Afr. J. Biotechnol. 4, 1329–1334 (2005)Google Scholar
  9. 9.
    A. Siddeeg, W. Xia, J. Food Sci. 52, 8172–8179 (2015)Google Scholar
  10. 10.
    AOAC, Washington DC, (2000)Google Scholar
  11. 11.
    H.W. Jarrett, K.D. Cooksy, B. Ellis, J.M. Anderson, Anal Biochem. 153, 189–198 (1986)CrossRefGoogle Scholar
  12. 12.
    Z. He, W. Xia, Food Chem. 102, 808–811 (2007)CrossRefGoogle Scholar
  13. 13.
    C.X. Zeng, S.J. Qi, R.P. Xin, B. Yang, Y.H. Wang, Bioprocess. Biosyst. Eng. 38, 2053–2061 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Chapman, F. Pratt, California Univ (Agriculture division, USA, 1982)Google Scholar
  15. 15.
    I.N. Papadoyannis, G.K. Tsioni, V.F. Samanidou, J. Liq. Chromatogr. Relat. Technol. 20, 3203–3231 (1997)CrossRefGoogle Scholar
  16. 16.
    A. Al-Farga, H. Zhang, A. Siddeeg, M. Shamoon, M.V. Chamba, N. Al-Hajj, Food Chem. 211, 268–273 (2016)CrossRefGoogle Scholar
  17. 17.
    L.R. Beuchat, J. Agric. Food Chem. 25, 258–261 (1977)CrossRefGoogle Scholar
  18. 18.
    C.W. Coffmann, V.V. Garciaj, Int. J. Food Sci. Technol. 12, 473–484 (1977)CrossRefGoogle Scholar
  19. 19.
    FAO/WHO, Technical Report Series. 935 (2007)Google Scholar
  20. 20.
    S. Azhari, Y.S. Xu, Q.X. Jiang, W.S. Xia, JAIR. 2, 495–499 (2014)Google Scholar
  21. 21.
    A.C.C. Egbuonu, Asian. J. Biochem. 10, 230–236 (2015)Google Scholar
  22. 22.
    I.S.D. Carvalho, M. Teixeira, M. Brodelius, LWT Food Sci. Technol. 44, 293–298 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Siddeeg, Y. Xu, Q. Jiang, W. Xia, Food Sci. Biotechnol. 23, 345–353 (2014)CrossRefGoogle Scholar
  24. 24.
    E.K. Khalid, E.E. Babiker, A.E. Tinay, Food Chem. 82, 361–366 (2003)CrossRefGoogle Scholar
  25. 25.
    A.P. Isah, Y. Danladi, O.J. Ejike, Int. J. Agric. Pol. Res. 1, 62–66 (2013)Google Scholar
  26. 26.
    A.P. Kempka, F.J. Horvath, P. Fagundes, R.C. Prestes, RBTA. 9, 1797–1809 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Food Engineering, Faculty of EngineeringUniversity of GeziraWad MedaniSudan
  3. 3.Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations