Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2190–2202 | Cite as

Bacterial enzyme based spectrophotometric determination of phthalate esters in drinking water stored in PET bottles

  • Annamalai JayshreeEmail author
  • Namasivayam Vasudevan
Original Paper
  • 28 Downloads

Abstract

Phthalate esters (PEs) are major water pollutants raising concern of endocrine disruption on daily uptake even at nano-gram level. Among PEs, di-(2-ethylhexyl) phthalate (DEHP) is a high molecular weight PE predominently found in most of the plastic and PVC products. In the present study, daily consumption of PET bottle stored drinking water was taken into account; where leaching PEs occurs easily from its supporting matrix. Determination of PEs in water and other environmental samples by conventional methods involves solvent extraction and sophisticated instruments. To overcome such scenario, in the present study enzyme based spectrophotometric determination of PEs is been proposed. Purified bacterial esterase of 38 kDa is used in the study with optimised pH, temperature and T50 as 7.0, 40 °C and 65 °C. The Km and Vmax values of the purified esterase were derived to be 138.88 µM for DEHP as substrate and 3.15 µmol of phthalic acid liberated min−1 mL−1. Inhibitory effect of metals, minerals and salts that are commonly present in water was assessed at two varied concentrations: 10 and 30 ppm. Magnesium, sodium and mercury exhibited maximum inhibition of 41–47% when compared to other inhibitors. In spectrophotometric determination, upon enzymatic reaction of purified esterase with condensed PET bottle stored drinking water, PE concentration was quantified to be 0.01–0.54 µg L−1. LoD and LoQ based on method validation were calculated to be 0.4 and 1.18 µg L−1. Thus, this study would serve to overcome tedious solvent based extraction process and sophisticated instruments in the detection and quantification of PEs.

Keywords

Purified esterase Enzyme kinetics Phthalate ester PET bottle stored drinking water Spectrophotometry 

Notes

Acknowledgements

This research was supported by University Grants Commission (UGC), New Delhi, India and we thank the UGC for their gesture by endowing Basic Science Research Fellowship.

Supplementary material

11694_2019_139_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1029 kb)

References

  1. 1.
    N. Li, D.H. Wang, Y.Q. Zhou, M. Ma, J.A. Li, Z.J. Wang, Environ. Sci. Technol. 44, 6863 (2010)CrossRefGoogle Scholar
  2. 2.
    H.C. Erythropel, M. Maric, J.A. Nicell, R.L. Leask, V. Yargeau, Appl. Microbiol. Biotechnol. 98(24), 9967 (2014).  https://doi.org/10.1007/s00253-014-6183-8 CrossRefGoogle Scholar
  3. 3.
  4. 4.
    L.A. Ward, O.L. Cain, R.A. Mullally, K.S. Holliday, A.G.H. Werham, P.D. Baillie, S.M. Greenfield, BMC Public Health 9, 196 (2009).CrossRefGoogle Scholar
  5. 5.
    P. Schmid, M. Kohler, R. Meierhofer, S. Luzi, M. Wegelin, Water Res. 42(20), 5054 (2008)CrossRefGoogle Scholar
  6. 6.
    V. Kumar, N. Sharma, S.S. Maitra, Biotechnol. Rep. 15, 1 (2017)CrossRefGoogle Scholar
  7. 7.
    T. Nishioka, M. Iwata, T. Imaoka, M. Mutoh, Y. Egashira, T. Nishiyama, T. Shin, T. Fujii, Appl. Environ. Microbiol. 72(4), 2394 (2006)CrossRefGoogle Scholar
  8. 8.
    Z.H. Luo, K.L. Pang, J.D. Gu, R.K. Chow, L.L. Vrijmoed, Mar. Pollut. Bull. 58, 765 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Ding, C. Wang, Z. Xie, J. Li, Y. Yang, Y. Mu, X. Tang, B. Xu, J. Zhou, Z. Huang, PLoS ONE 10(3), e0119216 (2015).  https://doi.org/10.1371/journal.pone.0119216 CrossRefGoogle Scholar
  10. 10.
    K. Shibata, T. Fukuwatari, R. Sasak, Int. Congr. Ser. (2007). https://doi.org/10.1016/j.ics.2007.07.018
  11. 11.
    M. Del Carlo, A. Pepe, G. Sacchetti, D. Compagnone, D. Mastrocola, A. Cichelli, Food Chem. 111, 171 (2008). https://doi.org/10.1016/j.foodchem.2008.04.065.
  12. 12.
    P. Gimeno, A.F. Maggio, C. Bousquet, A. Quoirez, C. Civade, P.A. Bonnet, J. Chromatogr A. 1253(2012), 144–153 (2012)CrossRefGoogle Scholar
  13. 13.
    M.F. Zaater, Y.R. Tahboub, A.N. Al Sayyed, J. Chromatogr. Sci. 52(5), 447–452 (2014).Google Scholar
  14. 14.
    O.D. Shreve, M.R. Heether, Anal. Chem. 23(3), 441 (1951).  https://doi.org/10.1021/ac60051a014 CrossRefGoogle Scholar
  15. 15.
    M.B. Yulia, K. Thomas, L. Jenny, L.W. Dirk, Int. J. Anal. Chem. 2011, 704795 (2011)Google Scholar
  16. 16.
    C.E.L. Myhre, C.J. Nielsen, Atmos. Chem. Phys. 4, 1759 (2004)CrossRefGoogle Scholar
  17. 17.
    M.S. Qureshi, J. Fischer, J. Barek, Modern Electrochemical Methods XXXI (Lenka Srsenova-Best Servis, Strizovicka 19, Usti N, 2011), pp. 123–126Google Scholar
  18. 18.
    M.S. Qureshi, A.R. Yusoff, M.D.H. Wirzal, Sirajuddin, J. Barek, H.I. Afridi, Z. Ustundag, Crit. Rev. Anal. Chem. 46, 146 (2016).Google Scholar
  19. 19.
    J. Annamalai, V. Namasivayam, Food Meas. 11(4), 2222–2232 (2017).  https://doi.org/10.1007/s11694-017-9607-1 CrossRefGoogle Scholar
  20. 20.
    J.H. Niazi, D.T. Prasad, T.B. Karegoudar, FEMS Microbiol. Lett. 196, 201 (2001)CrossRefGoogle Scholar
  21. 21.
    B. Prasad, S. Suresh, IJESD 3, 283 (2001).Google Scholar
  22. 22.
    F. Zeng, K. Cui, X. Li, J. Fud, G. Sheng, Process. Biochem. 39, 1125 (2004).  https://doi.org/10.1016/S0032-9592(03)00226-7 CrossRefGoogle Scholar
  23. 23.
    P. Lestari, N. Prihatiningsih, H.A. Djatmiko, IOP Conf. 172(012041), 1–7 (2017)Google Scholar
  24. 24.
    M.M. Bradford, Anal. Biochem. 72, 248 (1976)CrossRefGoogle Scholar
  25. 25.
    H. De Yan, Y.J. Zhang, H.C. Liu, J.Y. Zheng, Z. Wang, Biotechnol. Appl. Biochem. 60(3), 343–347 (2013)CrossRefGoogle Scholar
  26. 26.
    F.F. Castro, A.B.P. Pinheiro, E.C.M. Gerhardt, M.A.S. Oliveira, I.P. Barbosa-Tessmann, J. Basic Microbiol. 58(2), 131 (2017).  https://doi.org/10.1002/jobm.201700509 CrossRefGoogle Scholar
  27. 27.
    U.K. Laemmli, Nature 227, 680 (1970)CrossRefGoogle Scholar
  28. 28.
    R.W. Sarver, W.C. Krueger, Anal. Biochem. 194, 89 (1991)CrossRefGoogle Scholar
  29. 29.
    J. Guo, C.P. Chen, S.G. Wang, X.J. Huang, Enzym. Microbiol. Technol. 71, 8 (2015)CrossRefGoogle Scholar
  30. 30.
    J.P. Goddard, J.L. Reymond, Trends Biotechnol. 22, 363 (2004)CrossRefGoogle Scholar
  31. 31.
    D. Sompornpailin, S. Siripattanakul-Ratpukdi, A.S. Vangnai, Int. Biodeterior. Biodegrad. 91, 138–147 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Xin, Y. Hui-Ying, BMC Biotechnol. 13, 108 (2013)CrossRefGoogle Scholar
  33. 33.
    J. Kong, S. Yu, Acta Biochim. Biophys. Sin. 39, 549 (2007)CrossRefGoogle Scholar
  34. 34.
    W.K. Surewicz, H.H. Mantsch, Biochim. Biophys. Acta 952, 115 (1988)CrossRefGoogle Scholar
  35. 35.
    S.Y. Venyaminov, N.N. Kalnin, Biopolymers 30, 1243 (1990)CrossRefGoogle Scholar
  36. 36.
    A. Dong, P. Huang, W.S. Caughey, Biochemistry 29, 3303 (1990)CrossRefGoogle Scholar
  37. 37.
    U.T. Bornscheuer, FEMS Microbiol. Rev. 26, 73 (2002)CrossRefGoogle Scholar
  38. 38.
    K. Sayali, P. Sadichha, S. Surekha, Int. J. Curr. Microbiol. Appl. Sci. 2, 135 (2013)Google Scholar
  39. 39.
    T. Yoshioka, H. Ohno, T. Uematsu, Eur. J. Biochem. 248, 58 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, Centre for Environmental StudiesAnna UniversityChennaiIndia

Personalised recommendations