Advertisement

Peeling of key lime (Citrus aurantifolia) fruit aided with vacuum infusion, different levels of pectinase concentration and soaking time

  • Norhayati HussainEmail author
  • Izzreen Ishak
  • Muhammad Aiman Ahmad Kamal
  • Etty Syarmila Ibrahim Khushairay
  • Baizura Aya Putri Agus
Original Paper
  • 7 Downloads

Abstract

The application of enzymatic peeling technology aided with vacuum infusion has been studied extensively in this study to ease the peeling process of key lime (Citrus aurantifolia) fruit. Through response surface methodology, the optimum parameters such as vacuum pressure (450–600 mmHg), pectinase concentration (0.5–1.0%, v/v), duration of soaking time (15–45 min) and their effects on physicochemical properties of key lime fruit have been determined. The optimal conditions determined in this study were 600 mmHg of vacuum pressure, 0.93% v/v of pectinase concentration and 45 min of soaking time. The physicochemical properties analysed such as colour, pH, titratable acidity, total soluble solids, moisture content, and ascorbic acid content show no significant (p > 0.05) effect of enzymatic-peeling on quality parameters of key lime fruit products. The intensity of puree colour was significantly (p ≤ 0.05) improved by the vacuum-aided enzymatic treatment. Overall, vacuum-aided enzymatic treatment is an improved peeling method compared to the conventional method as it simplifies the process, reduces processing time and retains quality parameters of the key lime fruit products.

Keywords

Enzymatic peeling Key lime fruit Response surface methodology Soaking time Vacuum infusion 

Notes

Acknowledgements

The authors acknowledge the financial support provided by the Universiti Putra Malaysia and mentoring from teaching staff and laboratory staff of the Faculty of Food Science and Technology. Authors extend thanks to colleagues for editing the manuscript before submission.

References

  1. 1.
    M.S. Ladaniya, Citrus Fruit: Biology, Technology, and Evaluation, 1st edn. (Elsevier Inc., Atlanta, 2008), pp. 1–10CrossRefGoogle Scholar
  2. 2.
    USDA, Brazil drives global orange production decline. https://public.govdelivery.com/accounts/USDAFAS/subscriber/new. Accessed 26 Jan 2018
  3. 3.
    A. Perez, K. Plattner, Fruits and tree nuts outlook (FTS-357) USDA. Accessed 26 Sept 2014Google Scholar
  4. 4.
    MOA, Third National Agricultural Policy (1998-2010). Ministry of Agriculture and Agro-based Industry Malaysia (2016)Google Scholar
  5. 5.
    SABA, 38 benefits of lime (Kaccha nimbu) for skin, hair, and health. http://www.stylecraze.com/articles/benefits-of-lime-for-skin-hair-and-health. Accessed 31 Aug 2018
  6. 6.
    Z. Zou, W. Xi, Y. Hu, C. Nie, Z. Zhou, Food Chem. 196, 885 (2016)CrossRefGoogle Scholar
  7. 7.
    S.K. Fagodia, H.P. Singh, D.R. Batish, R.K. Kohli, Ind. Crop Prod. 108, 708 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Hazniza, A. Osman, H.M. Ghazali, R.A. Rahman, H. Adnan, A. Osman, R.A. Rahman, J. Trop. Agric. Sci. 37(1), 67 (2009)Google Scholar
  9. 9.
    I. Toker, A. Bayιndιrlι, Lebenson Wiss Technol. 36(2), 215 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Noguchi, Y. Ozaki, J. Azuma, Jpn. Agric. Res. Q. 49(4), 313 (2015)CrossRefGoogle Scholar
  11. 11.
    M.T. Pretel, P. Sanchez-Bel, I. Egea, F. Romojaro, Tree For. Sci. Biotechnol. 2(Special Issue 1), 52 (2008)Google Scholar
  12. 12.
    M.T. Pretel, A. Amoros, M.A. Botella, M. Serrano, F. Romojaro, J. Sci. Food Agric. 84, 86 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Hassan, Z. Othman, J. Siriphanich, Postharvest Biology and Technology of Tropical and Subtropical Fruits, 1st edn. (Woodhead Publishing, Cambridge, 2011), pp. 194–217CrossRefGoogle Scholar
  14. 14.
    M.T. Pretel, P. Lozano, F. Riquelme, F. Romojaro, Process Biochem. 32(1), 43 (1997)CrossRefGoogle Scholar
  15. 15.
    M.J. Rodrigo, B. Alquezar, E. Alos, J. Lado, L. Zacarias, Sci. Hortic. 163, 46 (2013)CrossRefGoogle Scholar
  16. 16.
    F. Liu, A. Osman, S. Yusof, H.M. Ghazali, J. Food Process. Preserv. 28(5), 336 (2004)CrossRefGoogle Scholar
  17. 17.
    P.B. Pathare, U.L. Opara, F.A.J. Al-Said, Food Bioprocess Technol. 6(1), 36 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Assawarachan, A. Noomhorm, Int. J. Agric. Biol. Eng. 3(1), 74 (2010)Google Scholar
  19. 19.
    R. Shamsudin, I.O. Mohamed, N.K.M. Yaman, J. Food Eng. 66, 395 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Ranganna, Handbook of Analysis and Quality Control for Fruit and Vegetable Products, 2nd edn. (Tata McGraw Hill Publishing Company Limited, New Delhi, 1997), pp. 11–12Google Scholar
  21. 21.
    AOAC, Official Methods of Analysis, 18th edn. (Association of Official Analytical Chemists, Virginia, 2005)Google Scholar
  22. 22.
    AOAC, Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Virginia, 2000)Google Scholar
  23. 23.
    J. Bruemmer, A. Griffin, Florida State Hortic. Soc. 91, 112 (1978)Google Scholar
  24. 24.
    Y. Liu, E. Heying, S.A. Tanumihardjo, Compr. Rev. Food Sci. Food Saf. 11(6), 530 (2012)CrossRefGoogle Scholar
  25. 25.
    S.J. Kays, Postharvest Biol. Technol. 15(3), 233 (1999)CrossRefGoogle Scholar
  26. 26.
    C. Sanchez, A.B. Baranda, I. Martínez de Maranon, Food Chem. 163, 37 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Wang, Q. Mu, W. Li, S. Wang, S. Zhang, J. Food Sci. 34(20), 312 (2013)Google Scholar
  28. 28.
    Z.W. Cui, S.Y. Xu, D.W. Sun, Drying Technol. 22(3), 563 (2004)CrossRefGoogle Scholar
  29. 29.
    P. Sanchez-Bel, I. Egea, M. Serrano, A. Romojaro, M.T. Pretel, Food Sci. Technol. Int. 18(1), 63–72 (2012)CrossRefGoogle Scholar
  30. 30.
    K.L. Penniston, S.Y. Nakada, R.P. Holmes, D.G. Assimos, J. Endourol. 22(3), 567 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Yamaki, J. Jpn. Soc. Hortic. Sci. 57, 568 (1989)CrossRefGoogle Scholar
  32. 32.
    R.L. Shrestha, D. Datta, D.M. Dhakal, K.P. Gautum, S. Paudyal, Am. J. Plant Sci. 3, 1688 (2012)CrossRefGoogle Scholar
  33. 33.
    S.S. Manjunatha, P.S. Raju, A.S. Bawa, Czech J. Food Sci. 5, 456 (2012)CrossRefGoogle Scholar
  34. 34.
    F. Vesali, M. Gharibkhani, M.H. Komarizadeh, Aust. J. Crop Sci. 5(2), 111 (2011)Google Scholar
  35. 35.
    S.S. Manjunatha, P.S. Raju, A.S. Bawa, J. Food Sci. Technol. 51(11), 3038 (2014)CrossRefGoogle Scholar
  36. 36.
    A.M. Pisoschi, A.F. Danet, S. Kalinowski, J. Autom. Methods Manag. Chem. 2008, 1 (2008)CrossRefGoogle Scholar
  37. 37.
    A. Bisconsin-junior, J. Fernando, R. Alvarenga, A. Rosenthal, M. Monteiro, J. Food Process. Technol. 6(2), 1 (2015)Google Scholar
  38. 38.
    M.K. Bull, K. Zerdin, E. Howe, D. Goicoechea, P. Paramanandhan, R. Stockman, C.M. Stewart, Innov. Food Sci. Emerg. Technol. 5(2), 135 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Technology, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Halal Products Research Institute, Putra InfoportSerdangMalaysia
  3. 3.Innovative Centre for Confectionery TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations