Advertisement

The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels

  • Prodromos SkenderidisEmail author
  • Chrysanthi Mitsagga
  • Ioannis Giavasis
  • Konstantinos Petrotos
  • Dimitrios Lampakis
  • Stefanos Leontopoulos
  • Christos Hadjichristodoulou
  • Andreas Tsakalof
Original Paper
  • 22 Downloads

Abstract

The present study aimed at assessing the antimicrobial properties of a water and ethanol ultrasound-assisted extraction (UAE) of dry goji berries and of lyophilised powdered pomegranate peel in vitro. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) methods, turbidity (cell density) measurement, and well diffusion assay were used to determine the antimicrobial activity against several species of foodborne bacteria (Gram – , Escherichia coli, Salmonella typhimurium, Campylobacter jejuni), (Gram + Staphylococcus aureus, Listeria monocytogenes, Clostridium perfringens), yeasts (Yarrowia lipolytica, Metschnikowia fructicola, and Rhodotorula mucilaginosa), and fungi (Penicillium expansum, Aspergillus niger, Fusarium oxysporum, and Rhizoctonia solani). Carbohydrate and phenolic contents were measured, and DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2΄-Azino-bis-(3-ethyl-benzthiazoline-sulphonic acid)) radical scavenging assays were used for the assessment of antioxidant activity. Fourier transform infrared (FTIR) spectrums of all samples were also evaluated in order to determine their chemical profiles. The lyophilised pomegranate peel exhibited the highest antioxidant, antimicrobial, and antifungal activity among all samples, while among the goji berry samples-who had only antibacterial and very little or no antifungal activity—the lyophilised aqueous extract with the lowest content of maltodextrin (2%) and highest phenolic content, had also the highest antioxidant, antimicrobial, and antifungal activity. The antioxidant and antimicrobial bioactivities seemed to be related to the content of polyphenols, the low concentration of maltodextrin in the encapsulated lyophilised samples and the use of optimised ultrasound assisted extraction. Minimum inhibitory concentration or zones of inhibition were in many (but not all) cases lower for the aqueous extracts compared to the ethanol or ethanol/hexane extracts of goji berries. In conclusion, the lyophilized powder of pomegranate peels and the aqueous extracts of goji berries encapsulated with minimal maltodextrin content and high polyphenol content exhibited high antioxidant and antimicrobial activity which could be utilized in food preservation or plant protection.

Keywords

Goji berry Pomegranate Antimicrobial activity Antioxidant activity Ultrasound assisted extraction Lyophilisation Encapsulation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    S. Leontopoulos, K. Petrotos, V. Anatolioti, P. Skenderidis, S. Tsilfoglou, I. Vagelas, Int. J. Food Biosyst. Eng. 6, 23 (2017)Google Scholar
  2. 2.
    P. Skenderidis, E. Kerasioti, E. Karkanta, D. Stagos, D. Kouretas, K. Petrotos, C. Hadjichristodoulou, A. Tsakalof, Toxicol. Rep. 5, 251–257 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Protti, I. Gualandi, R. Mandrioli, S. Zappoli, D. Tonelli, L. Mercolini, J. Pharm. Biomed. Anal. 143, 252 (2017)CrossRefGoogle Scholar
  4. 4.
    C.N. Aguilar, A. Aguilera-Carbo, A. Robledo, J. Ventura, R. Belmares, D. Martinez, R. Rodríguez-Herrera, J. Contreras, Food Technol. Biotechnol. 46, 218 (2008)Google Scholar
  5. 5.
    P. Skenderidis, K. Petrotos, I. Giavasis, C. Hadjichristodoulou, A. Tsakalof, J. Food Process Eng 40(5), e12522 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Amagase, B. Sun, C. Borek, Nutr. Res. 29, 19 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Le, F. Chiu, K. Ng, Food Chem. 105, 353 (2007)CrossRefGoogle Scholar
  8. 8.
    O. Potterat, Planta Med. 76, 7 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Qian, Y. Zhao, G. Yang, L. Huang, Molecules 22, 911 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Mocan, L. Vlase, D.C. Vodnar, A.M. Gheldiu, R. Oprean, G. Crisan, Molecules 20(8), 15060–15071 (2015).  https://doi.org/10.3390/molecules200815060 CrossRefGoogle Scholar
  11. 11.
    B. Kulczyński, A. Gramza-Michałowska, Pol. J. Food Nutr. Sci. 66, 67 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Amagase, N.R. Farnsworth, Food Res. Int. 44, 1702 (2011)CrossRefGoogle Scholar
  13. 13.
    A.P. Carvalho, M. Mendes, M.M. Moreira, D. Cruz, J.M. Magalhães, M.F. Barroso, M.J. Ramalhosa, A. Duarte, L. Guido, A.M. Gomes, C.D. Matos, Int. J. Food Sci. Technol. 51, 1401 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Vilkhu, R. Mawson, L. Simons, D. Bates, Innov. Food Sci. Emerg. Technol. 9, 161 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Leontopoulos, P. Skenderidis, H. Kalorizou, K. Petrotos, J. Food Biosys. Eng. 7, 1 (2017)Google Scholar
  16. 16.
    P. Robert, C. Fredes, Molecules (Basel, Switz.) 20, 5875 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Munin, F. Edwards-Lévy, Pharmaceutics 3, 793 (2011)CrossRefGoogle Scholar
  18. 18.
    K.B. Petrotos, F.K. Karkanta, P.E. Gkoutsidis, I. Giavasis, N. Papatheodorou, A. C. Ntontos 6, 170 (2012)Google Scholar
  19. 19.
    K.M.M. John, A.A. Bhagwat, D.L. Luthria, Food Chem. 235, 145 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Malik, F. Afaq, S. Sarfaraz, V.M. Adhami, D.N. Syed, H. Mukhtar, Proc. Natl. Acad. Sci. U.S.A. 102, 14813 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, S. Cheng, Food Chem. 96, 254 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Hajimahmoodi, M.R. Oveisi, N. Sadeghi, B. Jannat, M. Hadjibabaie, E. Farahani, M.R. Akrami, R. Namdar, Pak. J. Biol. Sci. 11, 1600 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Gozlekci, O. Saracoglu, E. Onursal, M. Ozgen, Pharmacogn. Mag. 7, 161 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Sood, M. Gupta, Food Biosci. 12, 100 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Kalaycıoğlu, F.B. Erim, Food Chem. 221, 496 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Çam, Y. Hışıl, Food Chem. 123, 878 (2010)CrossRefGoogle Scholar
  27. 27.
    U.A. Fischer, R. Carle, D.R. Kammerer, Food Chem. 127, 807 (2011)CrossRefGoogle Scholar
  28. 28.
    T. Ismail, P. Sestili, S. Akhtar, J. Ethnopharmacol. 143, 397 (2012)CrossRefGoogle Scholar
  29. 29.
    S.V. Leontopoulos, P. Skenderidis, V. Anatolioti, M.I. Kokkora, S. Tsilfoglou, K.B. Petrotos, I. Vagelas, J. Food Biosyst. Eng. 6(1), 38 (2017)Google Scholar
  30. 30.
    E. Haslam, J. Nat. Prod. 59, 205 (1996)CrossRefGoogle Scholar
  31. 31.
    S. Naz, R. Siddiqi, S. Ahmad, S.A. Rasool, S.A. Sayeed, J. Food Sci. 72, M341 (2007)CrossRefGoogle Scholar
  32. 32.
    L.C. Braga, J.W. Shupp, C. Cummings, M. Jett, J.A. Takahashi, L.S. Carmo, E. Chartone-Souza, A.M.A. Nascimento, J. Ethnopharmacol. 96, 335 (2005)CrossRefGoogle Scholar
  33. 33.
    N.S. Al-Zoreky, Int. J. Food Microbiol. 134, 244 (2009)CrossRefGoogle Scholar
  34. 34.
    G.M. El-Sherbini, K.M. Ibrahim, E.T. El Sherbiny, N.M. Abdel-Hady, T.A. Morsy, J. Egypt. Soc. Parasitol. 40, 229 (2010)Google Scholar
  35. 35.
    O.M. Albarri, I. Var, A. Boushihassal, M. Meral, C. Önlen, M.H. Mohamed, F. Köksal, J. Biotechnol. Sci. Res. 3(6), 175 (2017)Google Scholar
  36. 36.
    Y. Roos, M. Karel, Biotechnol. Prog. 6, 159 (1990)CrossRefGoogle Scholar
  37. 37.
    O.V. Alekseeva, A.V. Noskov, S.S. Guseinov, A.V. Agafonov, Prot. Met. Phys. Chem. Surf. 51, 253 (2015)CrossRefGoogle Scholar
  38. 38.
    A.L. Waterhouse, Current Protocols in Food Analytical Chemistry (Wiley, Hoboken, 2001)Google Scholar
  39. 39.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, Food Sci. Technol. 28, 25 (1995)Google Scholar
  40. 40.
    E. Kerasioti, D. Stagos, A. Priftis, S. Aivazidis, A.M. Tsatsakis, A.W. Hayes, D. Kouretas, Food Chem. 155, 271 (2014)CrossRefGoogle Scholar
  41. 41.
    J.C. Boulet, P. Williams, T. Doco, Carbohydr. Polym. 69, 79 (2007)CrossRefGoogle Scholar
  42. 42.
    S. Lohumi, C. Mo, J.-S. Kang, S.-J. Hong, B.-K. Cho, J. Biosyst. Eng. 38, 312 (2013)CrossRefGoogle Scholar
  43. 43.
    CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard, 9th edn. (CLSI, Wayne, 2012)Google Scholar
  44. 44.
    S.V. Leontopoulos, I. Giavasis, K. Petrotos, M. Kokkora, C. Makridis, Agric. Agric. Sci. Proc. 4, 327 (2015)Google Scholar
  45. 45.
    N.G. Baydar, O. Sagdic, G. Ozkan, S. Cetin, Int. J. Food Sci. Technol. 41(7), 799 (2006)CrossRefGoogle Scholar
  46. 46.
    P. Dalgaard, T. Ross, L. Kamperman, K. Neumeyer, T.A. McMeekin, Int. J. Food Microbiol. 23, 391 (1994)CrossRefGoogle Scholar
  47. 47.
    B. Shan, Y. Cai, J.D. Brooks, H. Corke, Int. J. Food Microbiol. 117, 112 (2007)CrossRefGoogle Scholar
  48. 48.
    S.V. Leontopoulos, K.B. Petrotos, M.I. Kokkora, I. Giavasis, C. Papaioannou, Desalin. Water Treat. 57, 20646 (2016)Google Scholar
  49. 49.
    C. Valgas, S.M. de Souza, E.F.A. Smânia, A. Smânia Jr., Braz. J. Microbiol. 38, 369 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Benchennouf, S. Grigorakis, S. Loupassaki, Pharm. Biol. 55, 596 (2017)CrossRefGoogle Scholar
  51. 51.
    N. Ullah, J. Ali, F.A. Khan, M. Khurram, A. Hussain, Middle-East J. Sci. Res. 11, 396 (2012)Google Scholar
  52. 52.
    A.C. Pedro, J.B.B. Maurer, S.F. Zawadzki-Baggio, S. Ávila, G.M. Maciel, C.W. Haminiuk, Ind. Crops Prod. 112, 90 (2018)CrossRefGoogle Scholar
  53. 53.
    R.F. Yang, C. Zhao, X. Chen, S.W. Chan, J.Y. Wu, J. funct. foods 17, 903 (2015)CrossRefGoogle Scholar
  54. 54.
    D. Donno, G.L. Beccaro, M.G. Mellano, A.K. Cerutti, G. Bounous, J. funct. foods 18, 1070 (2015)CrossRefGoogle Scholar
  55. 55.
    N.I. Fit, F. Chirila, G. Nadas, E. Pall, R. Muresan, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Vet. Med. 70, 72–613 (2013)Google Scholar
  56. 56.
    A. Asănică, C. Manole, V. Tudor, A. Dobre, R.I. Teodorescu, AgroLife Sci. J. 5(1), 15 (2016)Google Scholar
  57. 57.
    H. Vardin, A. Tay, B. Ozen, L. Mauer, Food Chem. 108, 742 (2008)CrossRefGoogle Scholar
  58. 58.
    L. Zuo, S. Sun, Q. Zhou, J. Tao, I. Noda, J. Pharm. Biomed. Anal. 30, 1491 (2003)CrossRefGoogle Scholar
  59. 59.
    D. Mlambo, Detection of Quercetin using Polymer Coated Quartz Crystal Microbalance and the Modification of á-Zirconium Phosphate to Develop a Sorbent for Organic Pollutant Removal. Doctoral dissertation, Marquette University (2010). Retrieved from https://epublications.marquette.edu/dissertations_mu/77/
  60. 60.
    D. Wu, S. Lam, K. Cheong, F. Wei, P. Lin, Z. Long, X. Lv, J. Zhao, S. Ma, S. Li, J. Pharm. Biomed. Anal. 129, 210 (2016)CrossRefGoogle Scholar
  61. 61.
    A. Mocan, L. Vlase, D.C. Vodnar, C. Bischin, D. Hanganu, A.-M. Gheldiu, R. Oprean, R. Silaghi-Dumitrescu, G. Crisan, Molecules (Basel, Switzerland) 19, 10056 (2014)CrossRefGoogle Scholar
  62. 62.
    I. Dahech, W. Farah, M. Trigui, A.B. Hssouna, H. Belghith, K.S. Belghith, F.B. Abdallah, Int. J. Biol. Macromol. 60, 328 (2013)CrossRefGoogle Scholar
  63. 63.
    A. Salvat, L. Antonacci, R.H. Fortunato, E.Y. Suarez, H.M. Godoy, Phytomedicine 11, 230 (2004)CrossRefGoogle Scholar
  64. 64.
    K. Barathikannan, B. Venkatadri, A. Khusro, N.A. Al-Dhabi, P. Agastian, M.V. Arasu, H.S. Choi, Y.O. Kim, BMC Complement. Altern. Med. 16, 264 (2016)CrossRefGoogle Scholar
  65. 65.
    M.E. Legaz, M.M. Pedrosa, R. de Armas, C.W. Rodrı́guez, V. de los Rios, C. Vicente, Anal. Chim. Acta 372, 201 (1998)CrossRefGoogle Scholar
  66. 66.
    P. Skenderidis, D. Lampakis, I. Giavasis, S. Leontopoulos, K. Petrotos, C. Hadjichristodoulou, Antioxidants 8, 60 (2019)CrossRefGoogle Scholar
  67. 67.
    T. Maruyama, S. Katoh, M. Nakajima, H. Nabetani, T.P. Abbott, A. Shono, K. Satoh, J. Membr. Sci. 192, 201 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Prodromos Skenderidis
    • 1
    • 2
    Email author
  • Chrysanthi Mitsagga
    • 2
  • Ioannis Giavasis
    • 2
  • Konstantinos Petrotos
    • 3
  • Dimitrios Lampakis
    • 3
  • Stefanos Leontopoulos
    • 3
  • Christos Hadjichristodoulou
    • 1
  • Andreas Tsakalof
    • 1
  1. 1.Department of Medicine, Lab of Hygiene and EpidemiologyUniversity of ThessalyLarissaGreece
  2. 2.Dept. of Food TechnologyTechnological Educational Institute of ThessalyKarditsaGreece
  3. 3.Dept. of Biosystems Engineering/Agricultural TechnologyTechnological Educational Institute of ThessalyLarissaGreece

Personalised recommendations