Advertisement

Detection of cracked shell in intact aromatic young coconut using near infrared spectroscopy and acoustic response methods

  • Sirinad NoypitakEmail author
  • Wachiraya Imsabai
  • Worawat Noknoi
  • Supasuta Karoojee
  • Anupun Terdwongworakul
  • Hikaru Kobori
Original Paper

Abstract

The objective of this study was to investigate the application of near infrared spectroscopy (NIRS) and acoustic response to detect cracking in aromatic young Thai coconuts. A sample of 202 aromatic young coconut fruits (106 normal and 96 cracked fruits) was harvested from Samutsakorn and Ratchaburi provinces in Thailand. The samples were scanned in reflectance mode using Fourier-transformed NIRS in the range 11,100–3996 cm−1 (900–2500 nm) and also measured for an acoustic response. Classification models were developed using partial least squares discrimination analysis. The accuracy of discrimination between normal coconuts and cracked coconuts with the acoustic response model was 85.07%. The best accuracy of discrimination was 94.03% based on absorbance spectra. NIRS offered a non-destructive means to detect the cracked shell of coconut fruit still attached to the bunch.

Keywords

Cracking Young coconut Near infrared reflectance Acoustic response 

Notes

Acknowledgements

The authors gratefully acknowledge the Thailand Research Fund (Grant number: RDG5820033) and the Faculty of Engineering at Kamphaengsaen, Kasetsart University, Thailand for financially supporting this research. The Postharvest Technology Center, Kasetsart University provided near infrared spectrometry support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    B. Jarimopas, N. Ruttanadat, A. Terdwongworakul, An automatic trimming machine for young coconut fruit. Biosyst. Eng. 103(2), 167–175 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Terdwongworakul, S. Chaiyapong, B. Jarimopas, W. Meeklangsaen, Physical properties of fresh young Thai coconut for maturity sorting. Biosyst. Eng. 103(2), 208–216 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Krisanapook, K. Thaipong, S. Thaipong, P. Saradhuldhat, W. Imsabai, P. Pagamas, S. Abdullakasim, R. Boonrungrod, W. Nitipan, U. Ninphet, Preliminary survey on production and invloed factors in young coconut for export. Complete Research Report. Thailand Research Fund (grant number: RDG542001, 2012)Google Scholar
  4. 4.
    B.M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46(2), 99–118 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Wang, J. Peng, C. Xie, Y. Bao, Y. He, Fruit quality evaluation using spectroscopy technology: a review. Sensors 15(5), 11889–11927 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Shenderey, I. Shmulevich, V. Alchanatis, H. Egozi, A. Hoffman, V. Ostrovsky, S. Lurie, R. Ben Arie, Z. Schmilovitch, NIRS detection of moldy core in apples. Food Bioprocess Technol. 3(1), 79–86 (2009)CrossRefGoogle Scholar
  7. 7.
    X. Fu, Y. Ying, H. Lu, H. Xu, Comparison of diffuse reflectance and transmission mode of visible-near infrared spectroscopy for detecting brown heart of pear. J. Food Eng. 83(3), 317–323 (2007)CrossRefGoogle Scholar
  8. 8.
    K. Ncama, S.Z. Tesfay, O.A. Fawole, U.L. Opara, L.S. Magwaza, Non-destructive prediction of ‘Marsh’grapefruit susceptibility to postharvest rind pitting disorder using reflectance Vis/NIR spectroscopy. Sci. Hortic. 231, 265–271 (2018)CrossRefGoogle Scholar
  9. 9.
    L.S. Magwaza, U.L. Opara, H. Nieuwoudt, P.J.R. Cronje, W. Saeys, B. Nicolaï, NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food Bioprocess Technol. 5(2), 425–444 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Fan, C. Li, W. Huang, L. Chen, Detection of blueberry internal bruising over time using NIR hyperspectral reflectance imaging with optimum wavelengths. Postharvest Biol. Technol. 134(Supplement C), 55–66 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Teerachaichayut, K.Y. Kil, A. Terdwongworakul, W. Thanapase, Y. Nakanishi, Non-destructive prediction of translucent flesh disorder in intact mangosteen by short wavelength near infrared spectroscopy. Postharvest Biol. Technol. 43(2), 202–206 (2007)Google Scholar
  12. 12.
    A. Terdwongworakul, N. Nakawajana, S. Teerachaichayut, A. Janhiran, Determination of translucent content in mangosteen by means of near infrared transmittance. J. Food Eng. 109(1), 114–119 (2012)CrossRefGoogle Scholar
  13. 13.
    K.A.P. Siriwardena, L.C.P. Fernando, N. Nanayakkara, K.F.G. Perera, A.D.N.T. Kumara, T. Nanayakkara, Portable acoustic device for detection of coconut palms infested by Rynchophorus ferrugineus (Coleoptera: Curculionidae). Crop Prot. 29(1), 25–29 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.X. Zhang, J.L. Han, W. Yao, Non-destructive watermelon maturity detection by acoustic response. In: Information Engineering and Computer Science (ICIECS), December, 2010 2nd International Conference on. IEEE (2010), pp. 1–4Google Scholar
  15. 15.
    B. Diezma-Iglesias, M. Ruiz-Altisent, P. Barreiro, Detection of internal quality in seedless watermelon by acoustic impulse response. Biosyst. Eng. 88(2), 221–230 (2004)CrossRefGoogle Scholar
  16. 16.
    Thai Meteorological Department, Ministry of Information and Communication Technology. Monthly Meteorological Information 2016 of Ratchaburi Meteorological Station, Bangkok, Thailand (2017)Google Scholar
  17. 17.
    V. Rajagopal, Boron deficiency in coconut diagnosis and correction, 1st edn. (Niseema Printers & Publisher, Kerala, 2001), pp. 14–17Google Scholar
  18. 18.
    A. Terdwongworakul, B. Jarimopas, S. Chaiyapong, S.P. Singh, J. Singh, Determination of physical, acoustical, mechanical, and chemical properties of fresh young coconut fruit for maturity separation. J. Test. Eval. 38(1), 1–8 (2010)Google Scholar
  19. 19.
    J. Hongwiangjan, A. Terdwongworakul, K. Krisanapook, Evaluation of pomelo maturity based on acoustic response and peel properties. Int. J. Food Sci. Technol. 50(3), 782–789 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Pathaveerat, A. Terdwongworakul, A. Phaungsombut, Multivariate data analysis for classification of pineapple maturity. J. Food Eng. 89(2), 112–118 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, J. Wu, Z. Zhao, Z. Wang, Nondestructive firmness measurement of differently shaped pears with a dual-frequency index based on acoustic vibration. Postharvest Biol. Technol. 138, 11–18 (2018)CrossRefGoogle Scholar
  22. 22.
    American Society of Agricultural and Biological Engineers. ASAE standard 1994: standards, engineering practices data, (MI, 1994) p. 471Google Scholar
  23. 23.
    D.T. Larose, Discovering knowledge in data: an introduction to data mining (Wiley, Hoboken, 2005), pp. 37–38Google Scholar
  24. 24.
    J.A. Cayuela, J.F. García, Nondestructive measurement of squalene in olive oil by near infrared spectroscopy. LWT-Food Sci. Technol. 88, 103–108 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)CrossRefGoogle Scholar
  26. 26.
    S. Fan, Z. Guo, B. Zhang, W. Huang, C. Zhao, Using Vis/NIR diffuse transmittance spectroscopy and multivariate analysis to predicate soluble solids content of apple. Food Anal. Method 9, 1333–1343 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Fu, Y. Ying, H. Lu, H. Xu, H. Yu, FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sens. Instrumen. Food Qual. 1, 29–35 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Noypitak, A. Terdwongworakul, K. Krisanapook, S. Kasemsumran, Evaluation of astringency and tannin content in ‘Xichu’ persimmons using near infrared spectroscopy. Int. J. Food Prop. 18(5), 1014–1028 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Siriphanich, Physiology and post-harvest technology of vegetable and fruit, 1st edn. (Printing House of Extension and Training Office, Kasetsart University, Nakhonpathom, 1995), p. 29Google Scholar
  30. 30.
    W.M. Walter Jr., B. Randall-Schadel, W.E. Schadel, Wound healing in cucumber fruit. J. Am. Soc. Hortic. Sci. 115, 444–452 (1990)CrossRefGoogle Scholar
  31. 31.
    J. Workman, L. Weyer, Practical guide and spectral atlas for interpretive near-infrared spectroscopy, 2nd edn. (Taylor & Francis Group, London, 2012), pp. 240–260Google Scholar
  32. 32.
    M.K.D. Rambo, A.R. Alves, W.T. Garcia, M.M.C. Ferreira, Multivariate analysis of coconut residues by near infrared spectroscopy. Talanta 138, 263–272 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Siriphanich, P. Saradhuldhat, T. Romphophak, K. Krisanapook, S., Pathaveerat, S. Tongchitpakdee, Coconut (Cocos nucifera), ed. By E.M. Yahia. Postharvest Biology and Technology of Tropical and Subtropical Fruits, vol. 3 (Woodhead Publishing Limited, Cambridge, UK, 2011), pp. 8–35Google Scholar
  34. 34.
    M.M. Gatchalian, S.Y. DeLeon, T. Yano, Measurement of young coconut (Cocos nucifera, L.) maturity by sound waves. J. Food Eng. 23(3), 253–276 (1994)CrossRefGoogle Scholar
  35. 35.
    C.T.C. Costa, C.M.L. Bevilaqua, S.M.D. Morais, L.M.B.D. Oliveira, A.L.F.C. Maciel, M.D.V. Vasconcelos, K.S.B.D. Lima, Ovicidal and larvicidal activity of Cocos nucifera L. extracts on Haemonchus contortus. Ciência Anim 21(2), 87–95 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sirinad Noypitak
    • 1
    Email author
  • Wachiraya Imsabai
    • 2
  • Worawat Noknoi
    • 1
  • Supasuta Karoojee
    • 2
  • Anupun Terdwongworakul
    • 1
  • Hikaru Kobori
    • 3
  1. 1.Department of Agricultural Engineering, Faculty of Engineering at KamphaengsaenKasetsart UniversityKamphaengsaenThailand
  2. 2.Department of Horticulture, Faculty of Agriculture at KamphaengsaenKasetsart UniversityKamphaengsaenThailand
  3. 3.Department of Bioresource Sciences, Faculty of AgricultureShizuoka UniversityShizuokaJapan

Personalised recommendations