Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1980–1990 | Cite as

Chemical and bioactive characterization of papaya (Vasconcellea pubescens) under different drying technologies: evaluation of antioxidant and antidiabetic potential

  • Antonio Vega-GálvezEmail author
  • Jacqueline Poblete
  • Issis Quispe-Fuentes
  • Elsa Uribe
  • Cristina Bilbao-Sainz
  • Alexis Pastén
Original Paper
  • 62 Downloads

Abstract

Chilean papaya slices were dried using different technologies to evaluate the effect of the different technologies on drying kinetics, bioactive compounds and biological activities. Five techniques were used: freeze drying (FD), vacuum drying (VD), solar drying (SD), convective drying (CD) and infrared drying (IRD). Fresh and dried samples were evaluated in terms of proximate composition, phenolic profiles, total phenolic and flavonoid contents, β-carotene, vitamin C, and antioxidant and α-glucosidase activities. CD-papaya showed lower processing time, requiring 270 min to reach the dynamic equilibrium condition, while SD-papaya required 870 min. The five drying technologies were found to have variable effects on proximate composition. VD-samples showed the lowest loss of individual phenolic compounds, total phenolic content and vitamin C while IRD- and CD-samples showed lower total flavonoids (42%) and β-carotene (32%) loss after processing, respectively. With respect to biological activities, all samples possessed enzymatic activity in a dose-dependent manner (0–2.0 mg ml−1), being IRD-sample the most effective in inhibiting α-glucosidase (IC50 = 13 mg ml−1). Also, the highest antioxidant capacity measured by DPPH and ORAC was obtained for the papaya samples dried using a vacuum drier.

Keywords

Vasconcellea pubescens Caricaceae Drying methods Phytochemicals Biological activity 

Notes

Acknowledgements

The authors gratefully acknowledge the Project FONDECYT 1170601 for providing financial support for the publication of this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    H.V. Annegowda, R. Bhat, in Nutritional Composition of Fruit Cultivars, ed. by M.S.J. Simmonds, V.R. Preedy (Academic Press, London, 2016), pp. 497–516CrossRefGoogle Scholar
  2. 2.
    T. Vij, Y. Prashar, Asian Pac. J. Trop. Dis. 5(1)), 1–6 (2015)CrossRefGoogle Scholar
  3. 3.
    P. Udomkun, M. Nagle, B. Mahayothee, D. Nohr, A. Koza, J. Müller, LWT—Food Sci. Technol. 60(2), 914–922 (2015)Google Scholar
  4. 4.
    I. Hewajulige, S.A. Dhekney, in Encyclopedia of Food and Health, ed. by B. Caballero, P.M. Finglas, F. Toldrá (Academic Press, Amsterdam, 2016), pp. 209–212CrossRefGoogle Scholar
  5. 5.
    E.H.K. Ikram, R. Stanley, M. Netzel, K. Fanning, J. Food Compost. Anal. 41, 201–211 (2015)CrossRefGoogle Scholar
  6. 6.
    W. Zhang, G. Zeng, Y. Pan, W. Chen, W. Huang, H. Chen, Y. Li, Carbohydr. Polym. 172, 102–112 (2017)CrossRefGoogle Scholar
  7. 7.
    M.A. Moya-León, M. Moya, R. Herrera, Postharvest Biol. Technol. 34, 211–218 (2004)CrossRefGoogle Scholar
  8. 8.
    M.J. Simirgiotis, P.D.S. Caligari, G. Schmeda-Hirschmann, Food Chem. 115, 775–784 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Uribe, A. Delgadillo, C. Giovagnoli-Vicuña, I. Quispe-Fuentes, L. Zura-Bravo, J. Chem. 2015, 1–8 (2015)CrossRefGoogle Scholar
  10. 10.
    O.I. Aruoma, J. Somanah, E. Bourdon, P. Rondeau, T. Bahorun, Mutat. Res. 768, 60–68 (2014)CrossRefGoogle Scholar
  11. 11.
    W.F. Gomes, F.R.M. Franca, M. Denadai, J.K.S. Andrade, E.M. da Silva Oliveira, E. Sousa de Brito, S. Rodrigues, N. Narain, J. Food Sci. Technol. 55(6), 2095–2102 (2018)CrossRefGoogle Scholar
  12. 12.
    H.V. Annegowda, R. Bhat, K.J. Yeong, M.-T. Liong, A.A. Karim, S.M. Mansor, Int. J. Food Prop. 17, 283–292 (2014)CrossRefGoogle Scholar
  13. 13.
    M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, J. Food Eng. 188, 32–49 (2016)CrossRefGoogle Scholar
  14. 14.
    M.N.A. Hawlader, C.O. Perera, M. Tian, K.L. Yeo, Drying Technol. 24, 77–87 (2006)CrossRefGoogle Scholar
  15. 15.
    N.M. Shofian, A.A. Hamid, A. Osman, N. Saari, F. Anwar, M.S.P. Dek, M.R. Hairuddin, Int. J. Mol. Sci. 12, 4678–4692 (2011)CrossRefGoogle Scholar
  16. 16.
    G.S. Abrol, D. Vaidya, A. Sharma, S. Sharma, Natl. Acad. Sci. Lett. 37(1), 51–57 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Lyu, J. Yi, J.F. Bi, H. Gao, M. Zhou, X. Liu, Int. J. Food Eng. 13(2), 20160250 (2016)Google Scholar
  18. 18.
    J.Y. Yi, J. Lyu, J.F. Bi, L.Y. Zhou, M. Zhou, J. Food Process. Preserv. 41, e13300 (2017)CrossRefGoogle Scholar
  19. 19.
    E. Vieira da Silva, L. Júnior, Lins de Melo, R.A., Batista de Medeiros, Z.M.P., P.M. Barros, Azoubel, LWT—Food Sci. Technol. 97, 317–322 (2018)Google Scholar
  20. 20.
    R. Sehrawat, P.K. Nema, B.P. Kaur, LWT—Food Sci. Technol. 92, 548–555 (2018)Google Scholar
  21. 21.
    AOAC, Official Methods of Analysis of AOAC International, 15th edn. (AOAC, International, Arlington, 1990)Google Scholar
  22. 22.
    A.M. Chuah, Y.C. Lee, T. Yamaguchi, H. Takamura, L.J. Yin, T. Matoba, Food Chem. 111(1), 20–28 (2008)CrossRefGoogle Scholar
  23. 23.
    I. Dini, G.C. Tenore, A. Dini, LWT—Food Sci. Technol. 43(3), 447–451 (2010)Google Scholar
  24. 24.
    L. Zhang, J. Li, S. Hogan, H. Chung, G.E. Welbaum, K. Zhou, Food Chem. 119(2), 592–599 (2010)CrossRefGoogle Scholar
  25. 25.
    P.S. Unnikrishnan, K. Suthindhiran, M.A. Jayasri, Pharmacogn. Mag. 11(44), S511–S515 (2015)CrossRefGoogle Scholar
  26. 26.
    A.K. Babu, G. Kumaresan, V.A.A. Raj, R. Velraj, Renew. Sust. Energ. Rev. 90, 536–556 (2018)CrossRefGoogle Scholar
  27. 27.
    R. Lemus-Mondaca, N. Betoret, A. Vega-Galvez, E. Lara-Aravena, J. Food Process. Eng. 32, 645–663 (2009)CrossRefGoogle Scholar
  28. 28.
    R. Lemus-Mondaca, C.E. Zambra, A. Vega-Galvez, N.O. Moraga, J. Food Eng. 116, 109–117 (2013)CrossRefGoogle Scholar
  29. 29.
    B. Fox, G. Bellini, L. Pellegrini, in Fermentation and Biochemical Engineering Handbook, 3rd edn, ed. by C.M. Tadaro, H.C. Vogel (Springer, New York, 2014), pp. 295–305Google Scholar
  30. 30.
    D.I. Onwude, N. Hashim, R.B. Janius, N.M. Nawi, K. Abdan, Compr. Rev. Food Sci. Food Saf. 15, 599–618 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Zhao, L. Zhong, R. Zhu, Y. Zhao, Z. Luo, X. Yang, Energy Convers. Manag. 120, 330–337 (2016)CrossRefGoogle Scholar
  32. 32.
    O.-V. Nistor, L. Seremet, D.G. Andronoiu, L. Rudi, E. Botez, Food Chem. 236, 59–67 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Bari, P. Hassan, N. Absar, M.E. Haque, M.I.I.E. Khuda, M.M. Pervin, S. Khatun, M.I. Hossain, Pak. J. Biol. Sci. 9, 137–140 (2006)CrossRefGoogle Scholar
  34. 34.
    O.C. Othman, Tanzan. J. Sci. 35, 47–55 (2009)Google Scholar
  35. 35.
    S. Tripathi, J.Y. Suzuki, J.B. Carr, G.T. McQuate, S.A. Ferreira, R.M. Manshardt, K.Y. Pitz, M.M. Wall, D. Gonsalves, J. Food Compos. Anal. 24(2), 140–147 (2011)CrossRefGoogle Scholar
  36. 36.
    G.E. Nwofia, P. Ojimelukw, C. Eji, Int. J. Med. Aromat. Plants 2, 200–206 (2012)Google Scholar
  37. 37.
    J. Samoticha, A. Wojdyło, K. Lech, LWT—Food Sci. Technol. 66, 484–489 (2016)Google Scholar
  38. 38.
    T. Wu, L. Mao, Food Chem. 110, 647–653 (2008)CrossRefGoogle Scholar
  39. 39.
    M.G. Liman, A.S. Abdullahi, A.L. Maigoro, K.J. Umar, IOSR J. Appl. Chem. 7(1), 38–42 (2014)CrossRefGoogle Scholar
  40. 40.
    S. Lenaerts, M. Van Der Borght, A. Callens, L. Van Campenhout, Food Chem. 254, 129–136 (2018)CrossRefGoogle Scholar
  41. 41.
    J.N. Calvache, M. Cueto, A. Farroni, M. de Escalada Pla, L.N. Gerschenson, J. Funct. Foods 27, 319–328 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Talens, J.C. Arboleya, M. Castro-Giraldez, P.J. Fito, LWT—Food Sci. Technol. 77, 110–118 (2017)Google Scholar
  43. 43.
    D.M. Rivera-Pastrana, E.M. Yahia, G. González-Aguilar, J. Sci. Food Agric. 90, 2358–2365 (2010)CrossRefGoogle Scholar
  44. 44.
    V. Spínola, J. Pinto, P.C. Castilho, Food Chem. 173, 14–30 (2015)CrossRefGoogle Scholar
  45. 45.
    D.S. Sogi, M. Siddiq, K.D. Dolan, LWT—Food Sci. Technol. 62, 564–568 (2015)Google Scholar
  46. 46.
    N. Boudhrioua, N. Bahloul, I.B. Slimen, N. Kechaou, Ind. Crops Prod. 29, 412–419 (2009)CrossRefGoogle Scholar
  47. 47.
    I.C. Vlachogianni, E. Fragopoulou, I.K. Kostakis, S. Antonopoulou, Food Chem. 177, 165–173 (2015)CrossRefGoogle Scholar
  48. 48.
    O. Patthamakanokporn, P. Puwastien, A. Nitithamyong, P.P. Sirichakwal, J. Food Compos. Anal. 21, 241–248 (2008)CrossRefGoogle Scholar
  49. 49.
    K. An, D. Zhao, Z. Wang, J. Wu, Y. Xu, G. Xiao, Food Chem. 197, 1292–1300 (2016)CrossRefGoogle Scholar
  50. 50.
    M.M. Wall, J. Food Compos. Anal. 19, 434–445 (2006)CrossRefGoogle Scholar
  51. 51.
    M. Wall, K. Nishijima, M. Fitch, W. Nishijima, J. Food Qual. 33, 131–149 (2010)CrossRefGoogle Scholar
  52. 52.
    Z. Jiao, J. Deng, G. Li, Z. Zhang, Z. Cai, J. Food Compos. Anal. 23, 640–647 (2010)CrossRefGoogle Scholar
  53. 53.
    L.E. Gayosso-Garcia Sancho, E.M. Yahia, G.A. González-Aguilar, Food Res. Int. 44, 1284–1291 (2011)CrossRefGoogle Scholar
  54. 54.
    M. Isabelle, B.L. Lee, M.T. Lim, W.-P. Koh, D. Huang, C.N. Ong, Food Chem. 123, 77–84 (2010)CrossRefGoogle Scholar
  55. 55.
    P. Udomkun, M. Nagle, D. Argyropoulos, B. Mahayothee, S. Latif, J. Muller, Food Chem. 196, 712–719 (2016)CrossRefGoogle Scholar
  56. 56.
    A. Gironés-Vilaplana, N. Baenas, D. Villaño, H. Speisky, C. García-Viguera, D.A. Moreno, J. Funct. Foods 7, 599–608 (2014)CrossRefGoogle Scholar
  57. 57.
    G. Oboh, A.A. Olabiyi, A.J. Akinyemi, A.O. Ademiluyi, J. Basic Clin. Physiol. Pharmacol. (2013).  https://doi.org/10.1515/jbcpp-2013-0002 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Antonio Vega-Gálvez
    • 1
    Email author
  • Jacqueline Poblete
    • 1
  • Issis Quispe-Fuentes
    • 1
    • 2
  • Elsa Uribe
    • 1
    • 2
  • Cristina Bilbao-Sainz
    • 3
  • Alexis Pastén
    • 1
  1. 1.Food Engineering DepartmentUniversidad de La SerenaLa SerenaChile
  2. 2.Instituto de Investigación Multidisciplinar en Ciencia y TecnologíaUniversidad de La SerenaLa SerenaChile
  3. 3.Healthy Processed Foods Research, Agricultural Research Service, U.S. Department of AgricultureAlbanyUSA

Personalised recommendations