Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1973–1979 | Cite as

Gas chromatography-ion mobility spectrometric classification of vegetable oils based on digital image processing

  • Tong Chen
  • Xingpu Qi
  • Daoli Lu
  • Bin ChenEmail author
Review Paper


In this paper, a headspace instrument equipped with gas chromatography-ion mobility spectrometry (GC-IMS) was used to classify three kinds of vegetable oils in cooperation with chemometric tools. The procedure contained direct loading of the vegetable oil sample into a vial, headspace generation, and automatic injection of volatile organic components into GC-IMS device. A total of 187 oil samples were detected by GC-IMS, and Otsu’s threshold segmentation and colorized difference methods were adopted to realize automatic peak detection of two-dimensional matrix and comparative visualization for further chemometric pretreatment. Based on the obtained data, principal components analysis showed that 95.77% of sample information could be explained by the first two principal components. Moreover, the oil samples were divided into calibration set (n = 130) and prediction set (n = 57), and the model built by the k-nearest neighbors algorithm showed that the recognition accuracy of calibration set was 100% and the recognition accuracy of prediction set was 98.24%. These results verify that digital image processing methods applied to GC-IMS datasets could preserve chemical information and support qualitative analysis. Thus, GC-IMS technique can be considered a vanguard and reliable tool for recognition of different types of common vegetable oils.


GC-IMS Vegetable oil Comparative analysis Classification 



This work was funded by the National Natural Science Foundation of China (Grant No. 31772056). The authors also would like to thank the support of Jinan Hanon Instrument (China).


  1. 1.
    F. Hashempour-Baltork, M. Torbati, S. Azadmard-Damirchi, G.P. Savage, Trends Food Sci. Technol. 57, 52–58 (2016)CrossRefGoogle Scholar
  2. 2.
    D.F. Jiang, C.L. Xin, W. Li, J.D. Chen, F.H. Li, Z.H. Chu, P.R. Xiao, L.J. Shao, Food Chem. Toxicol. 83, 61–67 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Giugliano, K. Esposito, J. Am. Coll. Cardiol. 48(2), 413–414 (2006)CrossRefGoogle Scholar
  4. 4.
    G. Dawson, J. Natl. Med. Assoc. 95(12), 1139–1140 (2003)Google Scholar
  5. 5.
    M.-L. Syren, S. Turolo, F. Marangoni, G.P. Milani, A. Edefonti, G. Montini, C. Agostoni, Clin. Nutr. 37(6), 1829–1839 (2018)CrossRefGoogle Scholar
  6. 6.
    H.F. Zickgraf, K. Schepps, Food Qual. Pref. 54, 39–50 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Tan, R. Li, Z.-T. Jiang, S.-H. Tang, Y. Wang, M. Shi, Y.-Q. Xiao, B. Jia, T.-X. Lu, H. Wang, Food Chem. 217, 274–280 (2017)CrossRefGoogle Scholar
  8. 8.
    F. Mabood, R. Boqué, R. Folcarelli, O. Busto, F. Jabeen, A. Al-Harrasi, J. Hussain, Spectrochim. Acta Part A 161, 83–87 (2016)CrossRefGoogle Scholar
  9. 9.
    M.J. Lerma-Garcia, L. Cerretani, C. Cevoli, E.F. Simo-Alfonso, A. Bendini, T.G. Toschi, Sens. Actuators B 147(1), 283–289 (2010)CrossRefGoogle Scholar
  10. 10.
    X. Sun, L. Zhang, P. Li, B. Xu, F. Ma, Q. Zhang, W. Zhang, LWT Food Sci. Technol. 63(1), 430–436 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Mildnerszkudlarz, H.H. Jelen, J. Food Qual. 33(1), 21–41 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Salghi, W. Armbruster, W. Schwack, Food Chem. 153(24), 387–392 (2014)CrossRefGoogle Scholar
  13. 13.
    G.K. Kafle, L.R. Khot, S. Sankaran, H.Y. Bahlol, J.A. Tufariello, H.H. Hill Jr., Eng. Agric. Environ. Food. 9(4), 346–357 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Karpas, Food Res. Int. 54(1), 1146–1151 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Arce, M. Menéndez, R. Garrido-Delgado, M. Valcárcel, TrAC Trends Anal. Chem. 27(2), 139–150 (2008)CrossRefGoogle Scholar
  16. 16.
    I.A. Buryakov, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 800(1), 75–82 (2004)CrossRefGoogle Scholar
  17. 17.
    W. Vautz, J. Franzke, S. Zampolli, I. Elmi, S. Liedtke, Anal. Chim. Acta. 1024, 52–64 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Bunkowski, S. Maddula, A.N. Davies, M. Westhoff, P. Litterst, B. Bödeker, J.I. Baumbach, Int. J. Ion Mobil. Spectrom. 13(3), 141–148 (2010)CrossRefGoogle Scholar
  19. 19.
    W. Vautz, D. Zimmermann, M. Hartmann, J.I. Baumbach, J. Nolte, J. Jung, Food Addit. Contam. 23(11), 1064–1073 (2006)CrossRefGoogle Scholar
  20. 20.
    P.R.S. Baker, A.M. Armando, J.L. Campbell, O. Quehenberger, E. A. Dennis, J. Lipid Res. 55(11), 2432–2442 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Garrido-Delgado, M.E. Muñoz-Pérez, L. Arce, Food Control 85, 12–15 (2017)Google Scholar
  22. 22.
    R. Garrido-Delgado, L. Arce, M. Valcárcel, Anal. Bioanal. Chem. 402(1), 489–498 (2012)CrossRefGoogle Scholar
  23. 23.
    W. Vautz, R. Slodzynski, C. Hariharan, L. Seifert, J. Nolte, R. Fobbe, S. Sielemann, B.C. Lao, R. Huo, C.L. Thomas, Anal. Chem. 85(4), 2135–2142 (2013)CrossRefGoogle Scholar
  24. 24.
    B.V. Hollingsworth, S.E. Reichenbach, Q. Tao, A. Visvanathan, J. Chromatogr. A 1105(2), 51–58 (2006)CrossRefGoogle Scholar
  25. 25.
    Z. Sheng, X.Y. Jiang, W. Zhen, Adv. Mater. Res. 403, 1618–1621 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Jyothi, K. Bhargavi, Int. J. Innov. Res. Dev. 3(12), 234–239 (2014)Google Scholar
  27. 27.
    P.S. Gromski, Y. Xu, K.A. Hollywood, M.L. Turner, R. Goodacre, Metabolomics 11(3), 684–695 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Jiangsu Agri-animal Husbandry Vocational CollegeTaizhouPeople’s Republic of China

Personalised recommendations