Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1964–1972 | Cite as

Simultaneous determination of Sunset Yellow and Tartrazine in soft drinks on carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride

  • Alexander Chebotarev
  • Anastasiya Koicheva
  • Kateryna Bevziuk
  • Konstantin Pliuta
  • Denys SnigurEmail author
Original Paper
  • 31 Downloads

Abstract

In this work the carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride for simultaneous determination of Sunset Yellow FCF and Tartrazine have been proposed. The optimal conditions for the determination of Sunset Yellow FCF (pH 2, Eads = 400 mV and tads = 180 s) and Tartrazine (pH 2, Eads = 300 mV and tads = 300 s) were established. The optimal conditions for the square-wave voltammetric determination of dyes (A = 40 mV, ν = 25 Hz, υ = 100 mV/s for Sunset Yellow FCF and A = 30 mV, ν = 25 Hz, υ = 100 mV/s for Tartrazine) were obtained. The calibration curves are linear in the concentration ranges of Sunset Yellow FCF 0.02–1 µM and Tartrazine 0.04–1 µM respectively. The developed sensor has been tested for simultaneous determination of dyes in model solutions and soft drink with RSD no more than 2.5%.

Graphical abstract

Keywords

Carbon-paste electrode Cetylpyridinium chloride Sunset Yellow FCF Tartrazine 

Notes

References

  1. 1.
    S. Sahnoun, M. Boutahala, Int. J. Biol. Macromol. 114, 1345–1353 (2018)CrossRefGoogle Scholar
  2. 2.
    D. Bhatt, K. Vyas, S. Singh, P.J. John, I. Soni, Food Chem. Toxicol. 113, 322–327 (2018)CrossRefGoogle Scholar
  3. 3.
    K.A. Amin, H. Abdel Hameid, A.H. Abd, Elsttar, Food Chem. Toxicol. 48, 2994–2999 (2010)CrossRefGoogle Scholar
  4. 4.
    K. Rovina, P.P. Prabakaran, S. Siddiquee, S.M. Shaarani, TrAC-Trends Anal. Chem. 85, 47–56 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Yadav, A. Kumar, A. Tripathi, M. Das, Toxicol. Lett. 217, 197–204 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Axon, F.E. May, L.E. Gaughan, F.M. Williams, P.G. Blain, M.C. Wright, Toxicology 298, 40–51 (2012)CrossRefGoogle Scholar
  7. 7.
    E.C. Vidotti, J.C. Cancino, C.C. Oliveira, M. Rollemberg, Anal. Sci. 21, 149–153 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Ni, Y. Wang, S. Kokot, Talanta 78, 432–441 (2009)CrossRefGoogle Scholar
  9. 9.
    F. Gosetti, P. Frascarolo, E. Mazzucco, V. Gianotti, M. Bottaro, M.C. Gennaro, J. Chromatogr. A 1202, 58–63 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Kucharska, J. Grabka, Talanta 80, 1045–1051 (2010)CrossRefGoogle Scholar
  11. 11.
    F.J. Liu, C.T. Liu, W. Li, A.N. Tang, Talanta 132, 366–372 (2015)CrossRefGoogle Scholar
  12. 12.
    A.P. Patsovskii, N.V. Rudometova, Y.S. Kamentsev, J. Anal. Chem. 59, 150–154 (2004)CrossRefGoogle Scholar
  13. 13.
    Y. Akbarian, M. Shabani-Nooshabadi, H. Karimi-Maleh, Sens. Actuators B 273, 228–233 (2018)CrossRefGoogle Scholar
  14. 14.
    H. Karimi-Maleh, A. Bananezhad, M.R. Ganjali, P. Norouzi, A. Sadrnia, Appl. Surf. Sci. 441, 55–60 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, N. J. Chem. 42, 16378–16383 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, D. Zareyee, N. J. Chem. 42, 3828–3832 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi, Biosens. Bioelectron. 86, 879–884 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Gan, J. Sun, W. Meng, L. Song, Y. Zhang, Food Chem. 141, 3731–3737 (2013)CrossRefGoogle Scholar
  19. 19.
    S.M. Ghoreishi, M. Behpour, M. Golestaneh, Food Chem. 132, 637–641 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Qiu, L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, L. Bai, Food Chem. 190, 889–895 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Wang, Y. Gao, Q. Sun, J. Zhao, J. Electrochem. Soc. 161, B297–B304 (2014)CrossRefGoogle Scholar
  22. 22.
    S.M. Ghoreishi, M. Behpour, M. Golestaneh, Anal. Methods 3, 2842 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Songyang, X. Yang, S. Xie, H. Hao, J. Song, Food Chem. 173, 640–644 (2015)CrossRefGoogle Scholar
  24. 24.
    P.S. Dorraji, F. Jalali, Food Chem. 227, 73–77 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Zhang, T. Liu, X. Zheng, W. Huang, C. Wan, Colloids Surf. B 74, 28–31 (2009)CrossRefGoogle Scholar
  26. 26.
    G. Karim-Nezhad, Z. Khorablou, M. Zamani, P. Seyed Dorraji, M. Alamgholiloo, J. Food Drug Anal. 25, 293–301 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Li, X. Wang, H. Duan, Y. Wang, Y. Bu, C. Luo, Talanta 147, 169–176 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Bevziuk, A. Chebotarev, A. Koicheva, D. Snigur, Monatsh. Chem. 149, 2153–2160 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Jampasa, W. Siangproh, K. Duangmal, O. Chailapakul, Talanta 160, 113–124 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Yu, M. Shi, X. Yue, L. Qu, Sens. Actuators B 209, 1–8 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Ye, Y. Du, D. Lu, C. Wang, Anal. Chim. Acta 779, 22–34 (2013)CrossRefGoogle Scholar
  32. 32.
    S.M. Ghoreishi, M. Behpour, M. Golestaneh, J. Chin. Chem. Soc. 60, 120–126 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, L. Hu, X. Liu, B. Liu, K. Wu, Food Chem. 166, 352–357 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, V. Sidey, J. Mol. Struct. 1144, 216–224 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Snigur, A. Chebotarev, K. Bevziuk, J. Appl. Spectrosc. 85, 21–26 (2018)CrossRefGoogle Scholar
  36. 36.
    K. Bevziuk, A. Chebotarev, M. Fizer, A. Klochkova, K. Pliuta, D. Snigur, J. Chem. Sci. (2018)  https://doi.org/10.1007/s12039-017-1411-2 Google Scholar
  37. 37.
    L. Zhao, F. Zhao, B. Zeng, Electrochim. Acta 115, 247–254 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Wang, B. Yang, H. Wang, P. Yang, Y. Du, Anal. Chim. Acta 893, 41–48 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Chen, K. Wu, Y. Sun, X. Song, Sens. Actuators B 185, 582–586 (2013)CrossRefGoogle Scholar
  40. 40.
    E. Laviron, J. Electroanal. Chem. 101, 19–28 (1979)CrossRefGoogle Scholar
  41. 41.
    E. Laviron, J. Electroanal. Chem. 52, 355–393 (1974)CrossRefGoogle Scholar
  42. 42.
    M. Arvand, M. Zamani, M. Sayyar Ardaki, Sens. Actuators B 243, 927–939 (2017)CrossRefGoogle Scholar
  43. 43.
    K. Asadpour-Zeynali, A.M. Port, Electrochim. Acta 32, 369–379 (2014)CrossRefGoogle Scholar
  44. 44.
    Y. X.Ye.Du, D.Lu, С. Wang, Anal. Chim. Acta 779, 22–34 (2013)CrossRefGoogle Scholar
  45. 45.
    O.I. Lipskikh, E.I. Korotkova, Y.P. Khristunova, J. Barek, B. Kratochvil, Electrochim. Acta 260, 974–985 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of ChemistryOdessa I.I. Mechnikov National UniversityOdessaUkraine

Personalised recommendations