Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1839–1851 | Cite as

Effect of acoustic cavitation phenomenon on bioactive compounds release from Eryngium caucasicum leaves

  • Mandana BimakrEmail author
  • Ali Ganjloo
  • Aref Noroozi
Original Paper


This study investigated the effect of acoustic cavitation phenomenon generated by ultrasonic waves on bioactive compounds release from Eryngium caucasicum leaves into the surrounding medium. Peleg’s model was implemented to provide a clearer insight into the kinetics modeling during 60 min sonication at different temperatures (30–60 °C) and ultrasonic power (50–150 W). The experimental data were successfully fitted employing Peleg’s model with the high coefficient of determination (0.95), low root mean square error (0.003%) and mean relative percentage deviation modulus (6.40%). Then, the optimal conditions, using response surface methodology (RSM), were determined as ultrasonic power of 112.10 W, temperature of 50.00 °C and 33.53 min sonication time. Spectrophotometric analysis revealed that extract was a potential source of phenolics (64.00 ± 0.13 mg GAE g−1) with high scavenging ability of DPPH˙, ABTS˙+ and HO˙ (78.18 ± 0.12, 74.19 ± 0.14 and 49.38 ± 0.18%, respectively). The high-performance liquid chromatography (HPLC) revealed that gallic acid, chlorogenic acid, p-coumaric acid, ferulic acid, and apigenin were the main phenolics existed in the product. The process efficiency was enhanced significantly (p < 0.05) via performing preliminary static time (PST, 60 min). The quantity and quality of extracts improved using PST, where gallic acid had the highest concentration (24.59 ± 0.12 mg g−1). Scanning electron microscopy (SEM) images confirmed the dramatic effect of acoustic cavitation on cells structure.


Eryngium caucasicum Acoustic cavitation Process efficiency Static time High-performance liquid chromatography Scanning electron microscopy 


Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.


  1. 1.
    A. Worz, Turk. J. Bot. 28, 85–92 (2004)Google Scholar
  2. 2.
    K. Khoshbakht, K. Hammer, K. Pistrick, Genet. Resour. Crop Evol. 54, 445–448 (2007)CrossRefGoogle Scholar
  3. 3.
    S.M. Nabavi, S.F. Nabavi, H. Alinezhad, M. Zare, R. Azimi, Eur. Rev. Med. Pharmacol. Sci. 16, 81–87 (2012)Google Scholar
  4. 4.
    P.G. Peiretti, G. Meineri, F. Gai, E. Longato, R. Amarowicz, Nat. Prod. Res. 31, 2178–2182 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Bimakr, A.R. Russly, S.T. Farah, M.A. Noranizan, I.S.M. Zaidul, A. Ganjloo, Food Bioprocess. Tech. 9, 396–406 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Bimakr, A.R. Russly, A. Ganjloo, in Processing and Impact on Active Components in Foods, ed. by V. Preedy (Elsevier publishing, New York, 2015), p. 407CrossRefGoogle Scholar
  7. 7.
    F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian, Ultrason. Sonochem. 34, 540–560 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Dey, V.K. Rathod, Ultrason. Sonochem. 20, 271–276 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Kamran Khan, M. Abert-Vian, A.S. Fabiano-Tixier, O. Dangles, F. Chemat, Food Chem. 119, 851–858 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Bimakr, A.R. Russly, S.T. Farah, M.A. Noranizan, I.S.M. Zaidul, A. Ganjloo, Int. Food Res. J. 19, 229–234 (2012)Google Scholar
  11. 11.
    L. Wang, C.L. Weller, Trends Food Sci. Technol. 17, 300–312 (2006)CrossRefGoogle Scholar
  12. 12.
    R. Vardanega, D.T. Santos, M.A. Meireles, Pharmacogn. Rev. 8, 88–95 (2014)CrossRefGoogle Scholar
  13. 13.
    Z. Pan, W. Qu, H. Ma, G.G. Atungulu, T.H. Mchugh, Ultrason. Sonochem. 18, 1249–1257 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Meullemiestre, C. Breil, M. Abert-Vian, F. Chemat, Bioresour. Technol. 211, 190–199 (2016)CrossRefGoogle Scholar
  15. 15.
    A.L.B. Dias, C.S.A. Sergio, P. Santos, G.F. Barbero, C.A. Rezende, J. Martinez, J. Food Eng. 198, 36–44 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Poodi, M. Bimakr, A. Ganjloo, S. Zarringhalami, Food Bioprod. Process. 108, 37–50 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Ganjloo, R.A. Rahman, J. Bakar, A. Osman, M. Bimakr, Food Bioprocess. Tech. 4, 1442–1449 (2011)CrossRefGoogle Scholar
  18. 18.
    L.L. Zhang, M. Xu, Y.M. Wang, D.M. Wu, J.H. Chen, Molecules 15, 7923–7932 (2010)CrossRefGoogle Scholar
  19. 19.
    N. Aslan, Y. Cebeci, Fuel 86, 90–97 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Salehi, M. Noaparast, S.Z. Shafaei, Physicochem. Probl. Mi. 52, 1023–1035 (2016)Google Scholar
  21. 21.
    M. Bimakr, A.R. Russly, S.T. Farah, M.A. Noranizan, I.S.M. Zaidul, A. Ganjloo, Molecules 17, 11748–11762 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Bimakr, R.A. Rahman, A. Ganjloo, F.S. Taip, L. Salleh, J. Selamat, A. Hamid, Food Bioprocess. Tech. 5, 912–920 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Bimakr, A.R. Russly, S.T. Farah, M.A. Noranizan, I.S.M. Zaidul, A. Ganjloo, Molecules 18, 997–1014 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Tao, Z. Zhang, D.W. Sun, Ultrason. Sonochem. 21, 1461–1469 (2014)CrossRefGoogle Scholar
  25. 25.
    T.W. Charpe, V.K. Rathod, Braz. J. Chem. Eng. 33, 1003–1010 (2016)CrossRefGoogle Scholar
  26. 26.
    E. Karacabey, L. Bayindirli, N. Artik, G. Mazza, J. Food Process Eng 36, 103–112 (2013)CrossRefGoogle Scholar
  27. 27.
    S.R. Shirsath, S.H. Sonawane, P.R. Gogate, Chem. Eng. Process. 53, 10–23 (2012)CrossRefGoogle Scholar
  28. 28.
    B.H. Fumes, M.R. Silva, F.N. Andrade, C.E.D. Nazario, F.M. Lancas, Trends Analyt. Chem. 71, 9–25 (2015)CrossRefGoogle Scholar
  29. 29.
    A.I. Khuri, S. Mukhopadhyaym, WIREs Comput. Stat. 2, 128–149 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Eswaraiah, J. Sep. Sci. Technol. 50, 2147–2154 (2015)Google Scholar
  31. 31.
    S. Nipornram, W. Tochampa, P. Pattanatraiwong, R. Singanusong, Food Chem. 241, 338–345 (2018)CrossRefGoogle Scholar
  32. 32.
    V.M. Kulkarni, V.K. Rathod, Ultrason. Sonochem. 21, 606–611 (2014)CrossRefGoogle Scholar
  33. 33.
    E. Espada-Bellido, M. Ferreiro-Gonzalez, C. Carrera, M. Palma, C.G. Barroso, G.F. Barbero, Food Chem. 219, 23–32 (2017)CrossRefGoogle Scholar
  34. 34.
    B.K. Tiwari, Trends Analyt. Chem. 71, 100–109 (2015)CrossRefGoogle Scholar
  35. 35.
    Q.A. Zhang, Z.Q. Zhang, X.F. Yue, X.H. Fan, T. Li, S.F. Chen, Food Chem. 116, 513–518 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Hemwimon, P. Pavasant, A. Shotipruk, Ultrason. Sonochem. 54, 44–50 (2007)Google Scholar
  37. 37.
    Z. Lou, H. Wang, M. Zhang, Z. Wang, J. Food Eng. 98, 13–18 (2010)CrossRefGoogle Scholar
  38. 38.
    M.B. Hossain, B.K. Tiwari, N. Gangopadhyay, C.P.O. Donnell, N.P. Brunton, D.K. Rai, Ultrason. Sonochem. 21, 1470–1476 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Boonkird, C. Phisalaphong, M. Phisalaphong, Ultrason. Sonochem. 15, 1075–1079 (2008)CrossRefGoogle Scholar
  40. 40.
    M.C. Herrera, M.D. Luque, De Castro, J. Chromatogr. A 1100, 1–7 (2005)CrossRefGoogle Scholar
  41. 41.
    D. Jadhav, P.R. Gogate, V.K. Rathod, J. Food Eng. 93, 421–426 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Toma, M. Vinatoru, L. Paniwnyk, T.J. Mason, Ultrason. Sonochem. 8, 137–142 (2001)CrossRefGoogle Scholar
  43. 43.
    N.A. Azmi, A. Idris, N.S.M. Yusof, Ultrason. Sonochem. 47, 99–107 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Engineering, Faculty of AgricultureUniversity of ZanjanZanjanIran

Personalised recommendations