Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1713–1720 | Cite as

Physicochemical changes in ‘Santa Rosa’ plum fruit treated with melatonin during cold storage

  • Erdinç BalEmail author
Original Paper
  • 90 Downloads

Abstract

This study was conducted to investigate the effects of melatonin treatments on biochemical compounds and postharvest quality plum cv. “Santa Rosa” during storage at 1 °C for 40 days. The plums were dipped in 0, 1, 10, 100 and 1000 µmol l−1 melatonin solution immediately after harvest. The changes of plums were assessed at 10-day intervals by evaluating the following quality parameters: weight loss, firmness, soluble solids content (SSC), titratable acidity (TA), SSC:TA, ascorbic acid content, total anthocyanin content, total phenolic content, antioxidant activity and decay rate. The results showed that treatment of melatonin at 100 and 1000 µmol l−1 was effective in reducing weight loss and maintaining greater firmness. However, low doses of melatonin treatment had no effect positively on carbohydrate, acids, biochemical compounds and spoilage. During cold storage, ascorbic acid content, total phenolic content and antioxidant activity were greater in 100 and 1000 µmol l−1 melatonin treated plums than the control and other doses. Meanwhile, 1000 µmol l−1 melatonin substantially reduced decay rate, which result from significantly higher biochemical compounds. These findings suggested that especially 1000 µmol l−1 melatonin treatment may be useful technique to extend the postharvest life of plum with acceptable fruit quality.

Keywords

Prunus salicina Melatonin Postharvest life Biochemical compound Quality 

Notes

References

  1. 1.
    P. Kumar, S. Sethi, R.R. Sharma, M. Srivastav, D. Singh, E. Varghese, Edible coatings influence the cold-storage life and quality of ‘Santa Rosa’ plum (Prunus salicina Lindell). J. Food Sci. Technol. 55(6), 2344–2350 (2018)CrossRefGoogle Scholar
  2. 2.
    D. Valero, M. Serrano, Postharvest Biology and Technology for Preserving Fruit Quality (CRC, Boca Raton, 2010), pp. 7–90CrossRefGoogle Scholar
  3. 3.
    C.H. Crisosto, D. Garnera, G.M. Crisosto, E. Bowerman, Increasing ‘Blackamber’ plum (Prunus salicina Lindell) consumer acceptance. Postharvest Biol. Technol. 34, 237–244 (2004)CrossRefGoogle Scholar
  4. 4.
    I.S. Minas, G.M. Crisosto, D. Holcroft, M. Vasilakakis, C.H. Crisosto, Postharvest handling of plums (Prunus salicina Lindl.) at 10 °C to save energy and preserve fruit quality using an innovative application system of 1-MCP. Postharvest Biol. Technol. 76, 1–9 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Thakur, P. Pristijono, J.B. Golding, C.E. Stathopoulos, C.J. Scarlett, M. Bowyer, Q.V. Vuong, Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (Prunus salicina). Sci. Hortic. 237, 59–66 (2018)CrossRefGoogle Scholar
  6. 6.
    M.A. Nawaz, Y. Huang, Z. Bie, W. Ahmed, R.J. Reiter, M. Niu, Melatonin: current status and future perspectives in plant science. Front. Plant Sci. 6, 1230 (2015)Google Scholar
  7. 7.
    J. Hernandez-Ruiz, M.B. Arnao, Phytomelatonin, an interesting tool for agricultural crops. Focus Sci. 2(2), 1–7 (2016)CrossRefGoogle Scholar
  8. 8.
    B. Gong, Y. Yan, D. Wen, Q. Shi, Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Plant Physiol. 160, 396–409 (2017)CrossRefGoogle Scholar
  9. 9.
    M.B. Arnao, J. Hernandez-Ruiz, Function of melatonin in plants: a review. J. Pineal Res. 59, 133–150 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Sharif, C. Xie, H. Zhang, M. Arnao, M. Ali, Q. Ali, I. Muhammad, A. Shalmani, M. Nawaz, P. Chen, Y. Li, Melatonin and its effects on plant systems. Molecules 23, 2352 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Hu, H. Kong, Y. Guo, Y. Zhang, Z. Ding, W. Tie, Y. Yan, Q. Huang, M. Peng, H. Shi, A. Guo, Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava. Front. Plant Sci. 7, 736 (2016)Google Scholar
  12. 12.
    Q. Ma, T. Zhang, P. Zhang, Z.Y. Wang, Melatonin attenuates postharvest physiological deterioration of cassava storage roots. J. Pineal Res. 60, 424–434 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Hu, W. Tie, W. Ou, Y. Yan, H. Kong, J. Zuo, X. Ding, Z. Ding, Y. Liu, C. Wu, Crosstalk between calcium and melatonin affects postharvest physiological deterioration and quality loss in cassava. Postharvest Biol. Technol. 140, 42–49 (2018)CrossRefGoogle Scholar
  14. 14.
    Q. Sun, N. Zhang, J. Wang, H. Zhang, D. Li, J. Shi, R. Li, S. Weeda, B. Zhao, S. Ren, Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot. 66, 657–668 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Hu, H. Yang, W. Tie, Y. Yan, Z. Ding, Y. Liu, C. Wu, J. Wang, R.J. Reiter, D. Tan, Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. J. Agric. Food Chem. 65, 9987–9994 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Cao, J. Shao, L. Shi, L. Xu, Z. Shen, W. Chen, Z. Yang, Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Sci. Rep. 8, 806 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Gao, Z.K. Zhang, H.K. Chai, N. Cheng, Y. Yang, D.N. Wang, T. Yang, W. Cao, Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 118, 103–110 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Zhai, J. Liu, F. Liu, Y. Zhao, L. Liu, C. Fang, H. Wang, X. Li, Z. Wang, F. Ma, Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biol. Technol. 139, 38–46 (2018)CrossRefGoogle Scholar
  19. 19.
    M.S. Aghdam, J.R. Fard, Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 221, 1650–1657 (2017)CrossRefGoogle Scholar
  20. 20.
    D. Xin, J. Si, J. Kou, Postharvest exogenous melatonin enhances quality and delays the senescence of cucumber. Acta Hortic. 44(5), 891–901 (2017)Google Scholar
  21. 21.
    C. Liu, H. Zheng, K. Sheng, W. Liu, L. Zheng, Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol. Technol. 139, 47–55 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, D. Huber, M. Hu, G. Jiang, Z. Gao, X. Xu, Y. Jiang, Z. Zhang, Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. J. Agric. Food Chem. 66, 7475–7484 (2018)CrossRefGoogle Scholar
  23. 23.
    A.O.A.C, Official Methods of Analysis of the Association of Official Analytical Chemists, 15th edn. (Association of Official Analytical Chemists, Arlington, 1990), pp. 1058–1059Google Scholar
  24. 24.
    R.E. Wrolstad, R.W. Durst, J. Lee, Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 16, 423–428 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Slinkard, V.L. Singleton, Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Vitic. 28, 49–55 (1977)Google Scholar
  26. 26.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Leb. Wiss Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  27. 27.
    E. Bal, Postharvest application of chitosan and low temperature storage affect respiration rate and quality of plum fruits. J Agri. Sci. and Technol. 15(6), 1219–1230 (2013)Google Scholar
  28. 28.
    S. Gunaydin, H. Karaca, L. Palou, B. de la Fuente, M.B. Perez-Gago, Efect of hydroxypropyl methylcellulose-beeswax composite edible coatings formulated with or without antifungal agents on physicochemical properties of plums during cold storage. J Food Qual. 2017, 1–9 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Valero, H.M. Díaz-Mula, P.J. Zapata, F. Guillen, D. Martínez-Romero, S. Castillo, M. Serrano, Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 77, 1–6 (2013)CrossRefGoogle Scholar
  30. 30.
    C.H. Crisosto, G.M. Crisosto, G. Echeverria, J. Puy, Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biol. Technol. 44, 71–276 (2007)CrossRefGoogle Scholar
  31. 31.
    A. Martinez-Espla, M. Serrano, D. Valero, D. Martinez-Romero, S. Castillo, P.J. Zapata, Enhancement of antioxidant systems and storability of two plum cultivars by preharvest treatments with salicylates. Int. J. Mol. Sci. 18, 1–14 (2017)CrossRefGoogle Scholar
  32. 32.
    M.W. Davey, M. van Montagu, D. Inze, M. Sanmartin, A. Kanellis, N. Smirnoff et al., Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci. Food Agri. 80, 825–860 (2000)CrossRefGoogle Scholar
  33. 33.
    J. Liu, R. Zhang, Y. Sun, Z. Liu, W. Jin, Y. Sun, The beneficial effects of exogenous melatonin on tomato fruit properties. Sci. Hortic. 207, 14–20 (2016)CrossRefGoogle Scholar
  34. 34.
    H.M. Diaz-Mula, P.J. Zapata, F. Guillen, S. Castillo, D. Martinez-Romero, D. Valero, M. Serrano, Changes in physiochemical and nutritive parameters and bioactive compounds during development and on-tree ripening of eight plum cultivars: a comparative study. J. Sci Food Agr. 88, 2499–2507 (2008)CrossRefGoogle Scholar
  35. 35.
    N. Zhang, Q. Sun, H. Li, X. Li, Y. Cao, H. Zhang, S. Li, L. Zhang, Y. Qi, S. Ren, Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front. Plant Sci. 7(197), 1–17 (2016)Google Scholar
  36. 36.
    N. Miletic, O. Mitrovic, B. Popovic, V. Nedovic, B. Zlatkovic, M. Kandic, Polyphenolic content and antioxidant capacity in fruits of plum (Prunus domestica L.) cultivars “Valjevka” and “Mildora” as influenced by air drying. J. Food Qual. 36(4), 229–237 (2013)CrossRefGoogle Scholar
  37. 37.
    B.A. Cevallos-Casals, D. Byrne, W.R. Okie, L. Cisneros-Zevallos, Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 96, 273–280 (2006)CrossRefGoogle Scholar
  38. 38.
    L. Zhu, H. Hu, S. Luo, Z. Wu, P. Li, Melatonin delaying senescence of postharvest broccoli by regulating respiratory metabolism and antioxidant activity. Trans. Chin. Soc. Agric. Eng. 34, 300–308 (2018)Google Scholar
  39. 39.
    L. Yin, P. Wang, M. Li, X. Ke, C. Li, D. Liang, F. Ma, Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J. Pineal Res. 54(4), 426–434 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Horticulture Department, Faculty AgricultureTekirdag Namık Kemal UniversityTekirdagTurkey

Personalised recommendations