Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1674–1682 | Cite as

Mineral content in monofloral bee pollen: investigation of the effect of the botanical and geographical origin

  • Vasilios Liolios
  • Chrysoula TananakiEmail author
  • Athanasios Papaioannou
  • Dimitrios Kanelis
  • Maria-Anna Rodopoulou
  • Nikolia Argena
Original Paper
  • 76 Downloads

Abstract

The object of this study was to determine bee pollen’s minerals composition and evaluate the effect of the botanical and geographical origin. The results showed that the predominant elements were K, P and Ca, comprising 42.5%, 31.2% and 15.7%, respectively, of the total mineral content. The analysis of 30 monofloral pollen species showed the effect of botanical origin, recording a large range among the species with the most characteristic being P (1362–9210 mg/kg), K (2684–11604 mg/kg) and Ca (446–4464 mg/kg). Their highest concentrations were found in Phacelia tanacetifolia, Erica manipuliflora and Actinidia chinensis, respectively. Furthermore, to determine the effect of geographical origin (soil, climate), monofloral pollen samples of Sinapis arvensis and Cistus creticus collected from different regions were analysed. The highest ranges were observed in composition of S. arvensis and C. creticus pollen in K and Ca. The findings of this study prove that bee pollen is a notable source of minerals, facilitating the trade of the product promoting it as a beneficial natural food supplement.

Keywords

Bee pollen Mineral composition Food supplement Unifloral species 

Notes

References

  1. 1.
    M.C. Martínez-Ballesta et al., Minerals in plant food: effect of agricultural practices and role in human health. A review. Agric. Sust. Dev. 30(2), 295–309 (2010)CrossRefGoogle Scholar
  2. 2.
    R.M. Welch, in Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, ed. by N.V. Wirén, W.J. By, A. Horst, N. Bürkert, H. Claassen, W.B. Flessa, H. Frommer, W. Goldbach, H.-W. Merbach, V. Olfs, B. Römheld, U. Sattelmacher, M.K. Schmidhalter, Schenk (Springer Netherlands, Dordrecht, 2002), p. 83CrossRefGoogle Scholar
  3. 3.
    S.M.T. Gharibzahedi, S.M. Jafari, The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 62, 119–132 (2017)CrossRefGoogle Scholar
  4. 4.
    M.A. Grusak, I. Cakmak, in Plant Nutritional Genomics, ed. by M.R. Broadley, P.J. White (Blackwell, Oxford, 2004), p. 266Google Scholar
  5. 5.
    D.L. Hurley et al., The use of vitamins and minerals in skeletal health: American association of clinical endocrinologists and the american college of endocrinology (aace/ace) position statement. Endocr. Pract. 24(10), 915–924 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Iannuzzi, Pollen: food for honey bee: and man? III. Am. Bee J. 133, 557–563 (1993)Google Scholar
  7. 7.
    L.B. Almeida-Muradian, L.C. Pamplona, S. Coimbra, O.M. Barth, Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 18(1), 105–111 (2005)CrossRefGoogle Scholar
  8. 8.
    M.G.R. Campos et al., Pollen composition and standardisation of analytical methods. J. Apic. Res. 47(2), 154–161 (2008)CrossRefGoogle Scholar
  9. 9.
    S.T. Carpes, R. Begnini, S.M. de Alencar, M.L. Masson, Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciênc. Agrotec. 31(6), 1818–1825 (2007)CrossRefGoogle Scholar
  10. 10.
    L.M. Estevinho, S. Rodrigues, A.P. Pereira, X. Feás, Int. J. Food Sci. Technol. 47(2), 429–435 (2012)CrossRefGoogle Scholar
  11. 11.
    M.T. Orzáez-Villanueva, A. Díaz-Marquina, Portuguese bee pollen: palynological study, nutritional and microbiological evaluation: Portuguese bee pollen. Int. J. Food Sci. Nutr. 52(3), 243–249 (2001)CrossRefGoogle Scholar
  12. 12.
    J. Serra-Bonvehí, R. Escolà-Jordà, Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. J. Agric. Food Chem. 45(3), 725–732 (1997)CrossRefGoogle Scholar
  13. 13.
    T. Szczêsna, Concentration of selected elements in honeybee-collected pollen. J. Apic. Sci. 51(1), 5–13 (2007)Google Scholar
  14. 14.
    M.A. Morgano et al., A comprehensive investigation of the mineral composition of brazilian bee pollen: geographic and seasonal variations and contribution to human diet. J. Braz. Chem. Soc. 23(4), 727–736 (2012)Google Scholar
  15. 15.
    K. Yang et al., Characterization of chemical composition of bee pollen in China. J. Agric. Food Chem. 61(3), 708–718 (2013)CrossRefGoogle Scholar
  16. 16.
    P.P. Sert, in The Healing Powers of Pollen, ed. by B.G. Tredaniel (Guy Tredaniel Editeur, Paris, 2006), p. 23Google Scholar
  17. 17.
    J. Stamler, Assessing diets to improve world health, nutritional research on disease causation in population. Am. J. Clin. Nutr. 59(1), 146S–156S (1994)CrossRefGoogle Scholar
  18. 18.
    A. Kostić et al., Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT-Food Sci. Technol. 62, 301–309 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Kaal, in Natural Medicine from HoneyBees (Apitherapy), ed. by B.J. Kaal (Kaal’s Printing House, Amsterdam, 1991), p. 55Google Scholar
  20. 20.
    J.A.G. Sattler et al., Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium) in dried bee pollen produced in Rio Grande do Sul State, Brazil. Food Sci. Technol. 36(3), 505–509 (2016)CrossRefGoogle Scholar
  21. 21.
    O.G. Stanciu, L.A. Mărghitaş, D. Dezmirean, Nutritional and biological values of bee pollen and beebread harvested from Romania. International conference of agricultural engineering CIGR-AGENG (2012)Google Scholar
  22. 22.
    H. Wang, Y. Inukai, A. Yamauchi, Root development and nutrient uptake. Crit. Rev. Plant Sci. 25(3), 279–301 (2006)CrossRefGoogle Scholar
  23. 23.
    Z. Kalaycıoğlu, H. Kaygusuz, S. Döker, S. Kolaylı, F.B. Erim, Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT-Food Sci. Technol. 84, 402–408 (2017)CrossRefGoogle Scholar
  24. 24.
    D.C. Somerville, H.I. Nicol, Mineral content of honeybee-collected pollen from southern New South Wales. Aust. J. Exp. Agric. 42(8), 1131–1136 (2002)CrossRefGoogle Scholar
  25. 25.
    E.K.A. Taha, Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanical origin. J. Apic. Sci. 59, 75–81 (2015)Google Scholar
  26. 26.
    M. Dimou, A. Thrasyvoulou, Seasonal variation in vegetation and pollen collected by honeybees in Thessaloniki. Greece Grana 46(4), 292–299 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Louveaux, A. Maurizio, G. Vorwohl, Methods of melissopalynology. Bee World 59(4), 139–157 (1978)CrossRefGoogle Scholar
  28. 28.
    S.E. Allen, H.M. Grimshaw, A.P. Rowland, in Chemical Analysis, ed. by P.D. By, S.B. Moore, Chapman (Blackwell, Oxford, 1986), p. 285Google Scholar
  29. 29.
    O.G. Stanciu, L.A. Marghitas, D.S. Dezmirean, M.G. Campos, Macro- and oligo-mineral elements from honeybee-collected pollen and beebread harvested from Transylvania (Romania). Bull. Univ. Agric. Sci. Vet. 66(1–2), 276–281 (2009)Google Scholar
  30. 30.
    N. Almaraz-Abarca et al., Antioxidant activity of polyphenolic extract of monofloral honeybee-collected pollen from mesquite (Prosopis juliflora, Leguminosae). J. Food Compos. Anal. 20(2), 119–124 (2007)CrossRefGoogle Scholar
  31. 31.
    V.A.S. de Arruda, A.A.S. Pereira, A.S. de Freitas, O.M. Barth, L.B. de Almeida-Muradian, Dried bee pollen: B complex vitamins, physicochemical and botanical composition. J. Food Compos. Anal. 29(2), 100–105 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Dimou, C. Tananaki, V. Liolios, A. Thrasyvoulou, Pollen foraging by honey bees (Apis mellifera L.) in Greece: botanical and geographical origin. J. Apic. Sci. 58(2), 11–23 (2014)Google Scholar
  33. 33.
    V. Liolios et al., Ranking pollen from bee plants according to their protein contribution to honey bees. J. Apic. Res. 54(5), 582–592 (2015)CrossRefGoogle Scholar
  34. 34.
    S.T. Carpes et al., Palynological and physicochemical characterization of Apis mellifera L. bee pollen in the Southern region of Brazil. J. Food Agric. Environ. 7(3–4), 667–673 (2009)Google Scholar
  35. 35.
    R. Landeweert, E. Hoffland, R.D. Finlay, T.W. Kuyper, N. van Breemen, Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16(5), 248–254 (2001)CrossRefGoogle Scholar
  36. 36.
    J.M. Niwas, C.B. Dissanayake, G. Keerthisinghe, Rocks as fertilizers: preliminary studies on potassium availability of some common rocks in Sri Lanka. Appl. Geochem. 2(2), 243–246 (1987)CrossRefGoogle Scholar
  37. 37.
    J.I. Sanz Scovino, D.L. Rowell, The use of feldspars as potassium fertilizers in the savannah of Colombia. Fertil. Res. 17, 71–83 (1988)CrossRefGoogle Scholar
  38. 38.
    B.C. Hanger, The movement of calcium in plants. Commun. Soil Sci. Plant Anal. 10(1–2), 171–193 (1979)CrossRefGoogle Scholar
  39. 39.
    R. Kuchenbuch, N. Claassen, A. Jungk, Potassium availability in relation to soil moisture. Plant Soil 95(2), 233–243 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vasilios Liolios
    • 1
  • Chrysoula Tananaki
    • 1
    Email author
  • Athanasios Papaioannou
    • 2
  • Dimitrios Kanelis
    • 1
  • Maria-Anna Rodopoulou
    • 1
  • Nikolia Argena
    • 1
  1. 1.Laboratory of Apiculture-SericultureAristotle University of ThessalonikiThermiGreece
  2. 2.Faculty of Agriculture Forestry and Natural Environment, School of ForestryAristotle University of ThessalonikiThermiGreece

Personalised recommendations