Advertisement

Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 1645–1651 | Cite as

Extraction, optimization and bioactivities of alcohol-soluble polysaccharide from Grifola frondosa

  • Hai-yu Ji
  • Juan Yu
  • Xiao-yu Chen
  • An-jun LiuEmail author
Original Paper
  • 100 Downloads

Abstract

Traditional extraction methods for polysaccharides are water extraction and ethanol precipitation, while the alcohol-soluble polysaccharides would be abandoned. The extraction process of alcohol-soluble polysaccharide from the fungus Grifola frondosa (GFAP) optimized by orthogonal test and the bioactivities (antitumor and antioxidant) were investigated in this study. The optimum extraction conditions were determined as follows: Solid–liquid ratio of 1:20 g/mL, extraction temperature of 65 °C, extraction time of 4.5 h, assistant factors of ultrasound-assisted extraction and extraction times of 2, under these conditions, the experimental yield of GFAP was 36.34 ± 1.26%. High Performance Gel Permeation Chromatography and chemical component analysis showed that the contents of total sugar, protein and uronic acid in GFAP were 95.83%, 0.34% and 0.21%, respectively, and its molecular weight was about 2.9 kDa. Additionally, results of MTT assay showed that GFAP could significantly inhibit the proliferation of Hepatocellular Carcinoma cell line (HepG2) in time- and dose- dependent manners. The in vitro antioxidant results showed that GFAP possessed excellent scavenging effects on ABTS+ (61.2%), DPPH (90.3%) and HO (49.2%) at the concentration of 2 mg/mL. These results demonstrated that GFAP is a relatively abundant polysaccahride in Grifola frondosa with strong antitumor and antioxidant activities. Our data provided a theoretical basis for the practical application of GFAP in the future.

Keywords

Alcohol-soluble polysaccharide from Grifola frondosa Extraction process Optimization Bioactivities 

Notes

Acknowledgements

The study received no financial support.

Compliance with ethical standards

Conflict of interest

None of the authors of this study has any financial interest or conflict with industries or parties.

References

  1. 1.
    I.-L. Shih, B.-W. Chou, C.-C. Chen, J.-Y. Wu, C. Hsieh, Bioresour. Technol. 99, 785–793 (2008)CrossRefGoogle Scholar
  2. 2.
    A. Zhang, J. Deng, S. Yu, F. Zhang, R.J. Linhardt, P. Sun, Int. J. Biol. Macromol. 115, 221–226 (2018)CrossRefGoogle Scholar
  3. 3.
    C.-Q. Gu, J.-W. Li, F. Chao, M. Jin, X.-W. Wang, Z.-Q. Shen, Antivir. Res 75, 250–257 (2007)CrossRefGoogle Scholar
  4. 4.
    C.-H. Su, M.-N. Lai, L.-T. Ng, Food Chem 220, 400–405 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Chen, T. Yong, C. Xiao, J. Su, Y. Zhang, C. Jiao, Y. Xie, J. Funct. Food. 43, 196–205 (2018)CrossRefGoogle Scholar
  6. 6.
    Q. Liu, X. Cao, X. Zhuang, W. Han, W. Guo, J. Xiong, X. Zhang, Food Chem. 223, 49–53 (2017)CrossRefGoogle Scholar
  7. 7.
    G.-H. Mao, Y. Ren, W.-W. Feng, Q. Li, H.-Y. Wu, D. jin, T. Zhao, C.-Q. Xu, L.-Q. Yang, X.-Y. Wu, Carbohydr. Polym. 134, 406–412 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Meng, D. Cheng, L. Han, Y. Chen, C. Wang, Carbohydr. Polym. 157, 1134–1143 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Zhao, L. Gao, C. Wang, B. Liu, Y. Jin, Z. Xing, Carbohydr. Polym. 144, 382–389 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Zhang, J.-J. Shi, K. Thakur, F. Hu, J.-G. Zhang, Z.-J. Wei, Front. Pharmacol. 8, 102 (2017)Google Scholar
  11. 11.
    G. Zhao, J. Kan, Z. Li, Z. Chen, Carbohydr. Polym. 61, 125–131 (2005)CrossRefGoogle Scholar
  12. 12.
    Q.-X. Xu, J.-J. Shi, J.-G. Zhang, L. Li, L. Jiang, Z.-J. Wei, Int. J. Biol. Macromol. 93, 1240–1252 (2016)CrossRefGoogle Scholar
  13. 13.
    J.-J. Shi, J.-G. Zhang, Y.-H. Sun, J. Qu, L. Li, C. Prasad, Z.-J. Wei, Int. J. Biol. Macromol. 91, 23–30 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Liu, L. Qiao, F. Yang, H. Gu, L. Yang, Int. J. Biol. Macromol. 94, 309–318 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Chen, X. Zhou, J. Zhang, Carbohydr. Polym. 111, 567–575 (2014)CrossRefGoogle Scholar
  16. 16.
    N. Fakhfakh, O. Abdelhedi, H. Jdir, M. Nasri, N. Zouari, Int. J. Biol. Macromol. 105, 1519–1525 (2017)CrossRefGoogle Scholar
  17. 17.
    J.-L. Mau, H.-C. Lin, S.-F. Song, Food Res. Int. 35, 519–526 (2002)CrossRefGoogle Scholar
  18. 18.
    J.-F. Yuan, Z.-Q. Zhang, Z.-C. Fan, J.-X. Yang, Carbohydr. Polym. 74, 822–827 (2008)CrossRefGoogle Scholar
  19. 19.
    D. Luo, Carbohydr. Polym. 71, 544–549 (2008)CrossRefGoogle Scholar
  20. 20.
    A.-J. Liu, J. Yu, H.-Y. Ji, H.-C. Zhang, Y. Zhang, H.-P. Liu, Molecules 23, 62 (2018)CrossRefGoogle Scholar
  21. 21.
    M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  22. 22.
    H. Barbosa, N.K.H. Slater, J.C. Marcos, Anal. Biochem. 395, 108–110 (2009)CrossRefGoogle Scholar
  23. 23.
    T. Bitter, H.M. Muir, Anal. Biochem. 4, 330–334 (1962)CrossRefGoogle Scholar
  24. 24.
    A. Gül, T. Pehlivan, Saudi J. Biol. Sci. 25, 1056–1065 (2018)CrossRefGoogle Scholar
  25. 25.
    K.M. Schaich, X. Tian, J. Xie, J. Funct. Food. 18, 782–796 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, J. Yu, X.D. Dong, H.-Y. Ji, Molecules 23, 20 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Chen, L.-J. You, A.M. Abbasi, X. Fu, R.H. Liu, Carbohydr. Polym. 130, 122–132 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Yuan, Y. Liu, M. Liu, Q. Chen, Y. Jiao, Y. Liu, Z. Meng, Saudi Pharm. J. 25, 523–530 (2017)CrossRefGoogle Scholar
  29. 29.
    V. Samavati, A. Manoochehrizade, Carbohydr. Polym. 98, 199–207 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Raza, F. Li, X. Xu, J. Tang, Int. J. Biol. Macromol. 94, 335–344 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Zhang, M. Wang, Int. J. Biol. Macromol. 95, 675–681 (2017)CrossRefGoogle Scholar
  32. 32.
    G.-L. Zhang, L. Jiang, Q. Yan, R.-H. Liu, L. Zhang, Asian Pac. J. Trop. Med. 8, 1055–1059 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Chen, G. Huang, Int. J. Biol. Macromol. 118, 770–774 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Yu, H.-Y. Ji, A.-J. Liu, Polymers 10, 417 (2018)CrossRefGoogle Scholar
  35. 35.
    K. Thirugnanasambandham, V. Sivakumar, J.P. Maran, Int. J. Biol. Macromol. 72, 1–5 (2015)CrossRefGoogle Scholar
  36. 36.
    A.D.S.E. Silva, W.T. de Magalhães, L.M. Moreira, M.V.P. Rocha, A.K.P. Bastos, Algal Res. 35, 178–184 (2018) A. d.CrossRefGoogle Scholar
  37. 37.
    Y. Yang, Z. Wang, D. Hu, K. Xiao, J.-Y. Wu, Food Hydrocolloids 79, 189–196 (2018)CrossRefGoogle Scholar
  38. 38.
    Y. Tao, D. Wu, Q.-A. Zhang, D.-W. Sun, Ultrason. Sonochem. 21, 706–715 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Tian, C. Hao, G. Xu, J. Yang, R. Sun, J. Food Drug Anal. 25, 766–775 (2017)CrossRefGoogle Scholar
  40. 40.
    B. Wang, Y. Jin, Y.G. Luo, Int. J. Automot. Technol. 11, 119–125 (2010)CrossRefGoogle Scholar
  41. 41.
    H.-Y. Ji, P. Chen, J. Yu, Y.-Y. Feng, A.-J. Liu, Appl. Biochem. Biotechnol. (2018)  https://doi.org/10.1007/s12010-018-02936-5 Google Scholar
  42. 42.
    Z.-J. Ma, L. Lu, J.-J. Yang, X.-X. Wang, G. Su, Z.-L. Wang, G.-H. Chen, H.-M. Sun, M.-Y. Wang, Y. Yang, Eur. J. Pharmacol. 821, 1–10 (2018)CrossRefGoogle Scholar
  43. 43.
    Y. Cui, P. Lu, G. Song, Q. Liu, D. Zhu, X. Liu, Food Chem. Toxicol. 92, 26–37 (2016)CrossRefGoogle Scholar
  44. 44.
    P. Fitzmorris, M. Shoreibah, B.S. Anand, A.K. Singal, J. Cancer Res. Clin. Oncol. 141, 861–876 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Yang, J. Li, L. Cui, Y. Ren, L. Niu, X. Wang, Y. Huang, L. Cui, Spectrochem. Acta Part A 193, 169–174 (2018)CrossRefGoogle Scholar
  46. 46.
    V. Gelen, E. Şengül, S. Gedikli, G. Atila, H. Uslu, M. Makav, Asian Pac. J. Trop. Med. 7, 647–653 (2017)CrossRefGoogle Scholar
  47. 47.
    Y. Lv, R.P. Glahn, R.L. Hebb, S.S.H. Rizvi, LWT 89, 315–321 (2018)CrossRefGoogle Scholar
  48. 48.
    H. Dong, Z. Qiang, J. Lian, J. Qu, J. Hazard. Mater. 336, 65–70 (2017)CrossRefGoogle Scholar
  49. 49.
    G.-Y. Liou, P. Storz, Free Radic. Res. 44, 479–496 (2010)CrossRefGoogle Scholar
  50. 50.
    X. Yuan, B. Wang, L. Yang, Y. Zhang, Clin. Res. Hepatol. Gastroenterol. 42, 306–312 (2018)CrossRefGoogle Scholar
  51. 51.
    A. Glasauer, N.S. Chandel, Biochem. Pharmacol. 92, 90–101 (2014)CrossRefGoogle Scholar
  52. 52.
    I. Hamlaoui, R. Bencheraiet, R. Bensegueni, M. Bencharif, J. Mol. Struct. 1156, 385–389 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hai-yu Ji
    • 1
    • 2
  • Juan Yu
    • 1
    • 2
  • Xiao-yu Chen
    • 1
    • 2
  • An-jun Liu
    • 1
    Email author
  1. 1.Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjinChina
  2. 2.QingYunTang Biotech (Beijing) Co., Ltd.BeijingChina

Personalised recommendations