Advertisement

Determination of suitability of black carrot (Daucus carota L. spp. sativus var. atrorubens Alef.) juice concentrate, cherry laurel (Prunus laurocerasus), blackthorn (Prunus spinosa) and red raspberry (Rubus ideaus) for kombucha beverage production

  • Abubekir Ulusoy
  • Canan Ece TamerEmail author
Original Paper

Abstract

Kombucha is a traditional refreshing beverage usually prepared by fermentation of sweetened black or green tea. In this study, it was aimed to investigate the effects of different raw material usage on composition and sensory properties of kombucha beverage. For this aim, cherry laurel, red raspberry, blackthorn fruits and black carrot juice concentrate were added to green tea infusion. After 40 h of fermentation at 28 ± 2 °C, beverages were stored at 4 °C for 10 days. During fermentation and storage; total acidity, pH, brix, colour, total phenolic matter content, antioxidant capacity (DPPH, FRAP and CUPRAC assays) and total monomeric anthocyanin content of the samples were analyzed. Furthermore, the changes in sensory properties were determined periodically. Total phenolic content and antioxidant capacities of the products were increased when compared to uncultivated substrates. The results demonstrated that use of anthocyanin rich raw materials together with green tea for fermentation contributed nutritional value, functional and sensory properties of the kombucha beverage.

Keywords

Kombucha beverage Fermentation Antioxidant capacity Anthocyanins 

Notes

References

  1. 1.
    C. Dufresne, E. Farnworth, Food Res. Int. 5, 409–421 (2000)Google Scholar
  2. 2.
    S.C. Chu, C. Chen, Food Chem. 8(3), 502–507 (2006)Google Scholar
  3. 3.
    T. Sriharia, J. Funct. Foods 5, 1794–1802 (2013)Google Scholar
  4. 4.
    H. Battikh, A. Bakhrouf, E. Ammar, LWT Food Sci. Technol. 47, 71–76 (2012)Google Scholar
  5. 5.
    C.P. Kurtzman, C.J. Robnett, E. Basehoar-Powers, FEMS Yeast Res. 1, 133–138 (2001)Google Scholar
  6. 6.
    P.J. Blanck, Biotechol. Lett. 18, 139–142 (1996)Google Scholar
  7. 7.
    M.R. Roussin, Analyses of kombucha ferments: report on growers: information resources. (LC, Salt Lake City, 1996)Google Scholar
  8. 8.
    D. Cvetković, S. Markov, M. Djuric, D. Savic, A. Velicanski, J. Food Eng. 85, 387–392 (2008)Google Scholar
  9. 9.
    M.I. Watawana, N. Jayawardena, S.J. Ranasinghe, V.Y. Waisundara, J. Chem. 1–9 (2015)Google Scholar
  10. 10.
    A.L. Teoh, G. Heard, J. Cox, Int. J. Food Microbiol. 95, 119–126 (2004)Google Scholar
  11. 11.
    C.J. Greenwalt, K.H. Steinkraus, R.A. Ledford, J. Food Prot. 63, 976–981 (2000)Google Scholar
  12. 12.
    S.D. Kumar, G. Narayan, S. Hassarajani, Food Chem. 11, 774–788 (2008)Google Scholar
  13. 13.
    J.M. Leal, L.V. Suárez, R. Jayabalan, J.H. Oros, A. Escalante-Aburto, CyTA J. Food 16(1), 390–399 (2018)Google Scholar
  14. 14.
    G. Sreeramulu, Y. Zhu, W. Knol, J. Agric. Food Chem. 48, 2589–2594 (2000)Google Scholar
  15. 15.
    R. Jayabalan, P. Subathradevi, S. Marimuthu, M. Sathishkumar, K. Swaminathan, Food Chem. 109, 227–234 (2008)Google Scholar
  16. 16.
    R.O. Lobo, C.K. Shenoy, J. Food Sci. Technol. 52(7), 4491–4498 (2015)Google Scholar
  17. 17.
    S. Bhattacharya, R. Gachhui, P.C. Sil, Food Chem. Toxicol. 60, 328–340 (2013)Google Scholar
  18. 18.
    M.P. Fournier-Larente, D. Morin, Grenier, Arch. Oral Biol. 65, 35–43 (2016)Google Scholar
  19. 19.
    D. Velicanski, S.L. Cvetkovic, V.T. Markov, S.M. Tumbas, Savatovic, Acta Period. Technol. 38, 1–190 (2007)Google Scholar
  20. 20.
    F. Fu, Z. Yan, F. Cao, J. Xie, Lin, Food Sci. Technol. Campinas 34(1), 123–126 (2014)Google Scholar
  21. 21.
    T.Z. Sun, J.S. Li, C. Chinshuh, J. Food Drug Anal. 23(4), 709–718 (2015)Google Scholar
  22. 22.
    L. Ayed, S.B. Abid, M. Hamdi, Ann. Microbiol. 67, 111–121 (2017)Google Scholar
  23. 23.
    R.V. Malbasa, E.S. Loncar, J.S. Vitas, J.M. Canadanovic-Brunet, Food Chem 127, 1727–1731 (2011)Google Scholar
  24. 24.
    J. Beekwilder, P. Meesters, R.D. Hall, I.M. van der Meer, C.H. Ric, de Vos, J. Agric. Food Chem. 53, 3313–3320 (2005)Google Scholar
  25. 25.
    H. Teng, T. Fang, Q. Lin, L. Chen, Trends Food Sci. Technol. 66, 153–165 (2017)Google Scholar
  26. 26.
    E. Ergüney, Z. Gülsünoğlu, E. Fıratlıgil-Durmus, M. Kılıç-Akyılmaz, Akademik Gıda 13(2), 108–114 (2015)Google Scholar
  27. 27.
    A. Eken, B. Baldemir, E. Ünlü-Endirlik, S. Bakır, İlgün, J. Food Compos. Anal. 26, 1–4 (2017)Google Scholar
  28. 28.
    R. Pinacho, R. Cavero, I. Astiasaran, D. Ansorena, M. Calvo, J. Funct. Foods. 19, 49–62 (2015)Google Scholar
  29. 29.
    T. Marakoğlu, D. Arslan, M. Özcan, H. Hacıseferoğulları, J. Food Eng. 68, 137–142 (2005)Google Scholar
  30. 30.
    E. Sikora, M.I. Bieniek, B. Barbara, Acta Sci. Pol. Technol. Aliment. 12, 365–372 (2013)Google Scholar
  31. 31.
    C. Alasalvar, J.M. Grigor, D. Zhang, P.C. Quantick, F. Shahidi, J. Agric. Food Chem. 49, 1410–1416 (2001)Google Scholar
  32. 32.
    B. Cemeroğlu, Gıda Analizleri, Gıda Teknolojisi Derneği Yayınları. (2007)Google Scholar
  33. 33.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  34. 34.
    V. Katalinic, M. Milos, T. Kulisic, M. Jukic, Food Chem. 94, 550–557 (2006)Google Scholar
  35. 35.
    I.F. Benzie, J.J. Strain, Anal. Biochem. 239(1), 70–76 (1996)Google Scholar
  36. 36.
    R. Apak, K. Güçlü, M. Özyürek, S.E. Çelik, Microchim. Acta 160, 413–419 (2008)Google Scholar
  37. 37.
    J. Lee, R.W. Durst, R.E. Wrolstad, J. AOAC Int. 88(5), 1269–1278 (2005)Google Scholar
  38. 38.
    L. Jungmin, R.W. Durst, R.E. Wrolstad, J. AOAC Int. 88(10), 1269–1278 (2005)Google Scholar
  39. 39.
    B.D. Vázquez-Cabral, N.E. Rocha-Guzmán, J.A. Gallegos-Infante, S.M. González-Herrera, R.F. González-Laredo, M.R. Moreno-Jiménez, Nutrafoods. 13, 169–178 (2014)Google Scholar
  40. 40.
    D. Granato, V.M.D.A. Calado, B. Jarvis, Food Res. Int. 55, 137–149 (2014)Google Scholar
  41. 41.
    D. Velicanski, S. Cvetkovic, Markov, Rom. Biotechnol. Lett. 8034–8042 (2013)Google Scholar
  42. 42.
    K. Torskangerpoll, O.M. Andersen, Food Chem. 89, 427–440 (2005)Google Scholar
  43. 43.
    P. I.Vīna, R. Semjonovs, I. Linde, Deniņa, J. Med. Food 17(2), 179–188 (2014)Google Scholar
  44. 44.
    C. Chen, B.Y. Liu, J. Appl. Microbiol. 89, 834–839 (2000)Google Scholar
  45. 45.
    R. Liamkaew, C. Janjira, D. Paiboon, Sci. Technol. RMUTT J. 2(6), 146 (2016)Google Scholar
  46. 46.
    M.I. Watawana, N. Jayawardena, B. Chaminie, Y. Gunawardhana-Viduranga, V.Y. Waisundara, Int. J. Food Sci. Technol. 51, 490–498 (2016)Google Scholar
  47. 47.
    M. Özkan, Ankara Üniversitesi Bilimsel Araştırma Projeleri, 2009Google Scholar
  48. 48.
    P. Dipti, B. Yogesh, A.K. Kain, T. Pauline, B. Anju, M. Sairam, Biomed. Environ. Sci. 16, 276–282 (2003)Google Scholar
  49. 49.
    M. Lui, X. Qi Li, C. Weber, C. Yong Lee, J. Brown, R. Hai Liu, J. Agric. Food Chem. 50(10), 2926–2930 (2002)Google Scholar
  50. 50.
    A. Mohammadshirazi, E.B. Kalhor, Renew. Sustain. Energy Rev. 55, 668–673 (2016)Google Scholar
  51. 51.
    S.P.J. Namal Senanayake, J. Funct. Foods 5(4), 1529–1541 (2013)Google Scholar
  52. 52.
    G.C. Yen, H.Y. Chen, J. Agric. Food Chem. 43(1), 27–32 (1995)Google Scholar
  53. 53.
    D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53, 1841–1856 (2005)Google Scholar
  54. 54.
    B. Jiang, Z.W. Zhen-Wen, Zhang, Molecules 17(8), 8804–8821 (2012)Google Scholar
  55. 55.
    R.J. Clarke, J. Bakker, Front matter in wine flavor chemistry, (Blackwell, Oxford, 2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of AgricultureBursa Uludag UniversityBursaTurkey

Personalised recommendations