Advertisement

Effect of roasting on phenolics composition, enzymes inhibitory and antioxidant properties of cowpea pulses

  • Emmanuel Anyachukwu IrondiEmail author
  • Ayomide Oluwaseyi Ogunsanmi
  • Rafiu Sadiq Ahmad
  • Emmanuel Oladipipo Ajani
  • Bosede Mofoluwake Adegoke
  • Aline Augusti Boligon
Original Paper
  • 6 Downloads

Abstract

Research has shown that different processing techniques affect the bioactive components in grain foods and their bioactivities. Hence, this study evaluated effect of roasting temperature (150 and 180 °C; 20 min) on phenolics composition, enzymes (pancreatic lipase, angiotensin 1-converting enzyme, α-amylase, α-glucosidase and xanthine oxidase) inhibitory and antioxidant properties of whole cowpea (Vigna unguiculata) pulses. Phenolic compounds were characterized using HPLC–DAD; enzymes inhibitory and antioxidant activities were assayed by spectrophotometric methods. Extract of raw cowpea contained flavonoids (catechin, quercitrin, quercetin, kaempferol and apigenin) and phenolic acids (gallic and caffeic acids). The extract strongly inhibited all the enzymes tested and displayed potent antioxidant activity. However, the levels of individual phenolics and enzymes inhibitory activity decreased significantly (p < 0.05) as the roasting temperature increased; whereas the antioxidant activity increased. Through the inhibition of these enzymes, whole cowpea pulses may help decelerate the rate of formation of fatty acids, angiotensin II, glucose and uric acid, which is an approach for managing obesity, hypertension, type 2 diabetes and hyperuricemia, respectively. However, roasting at high temperature may not be suitable for the retention of these benefits.

Keywords

Antioxidant activity Cowpea pulses Enzymes inhibition Phenolics Roasting 

Notes

Acknowledgements

We acknowledge Biochemistry Department, Kwara State University, Malete, Nigeria, for giving access to the departmental laboratory to carry out the various wet analyses in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Wang, F. Zhu, Food Res. Int. 85, 315–331 (2016)CrossRefGoogle Scholar
  2. 2.
    H.A. Oboh, K. Agu, J. Food Biochem. 34(6), 1332–1342 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Getek, N. Czech, M. Muc-Wierzgon, E. Grochowska-Niedworok, T. Kokot, E. Nowakowska-Zajdel, Evid Based Complement. Altern. Med. (2014)  https://doi.org/10.1155/2014/293961 Google Scholar
  4. 4.
    Y.-Y. Chen, T.-W. Kao, H.-F. Yang, C.-W. Chou, C.-J. Wu, C.-H. Lai, Y.-S. Sun, C.-C. Wang, W.-L. Chen, Clinica Chimica Acta. 478, 68–73 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Billiet, S. Doaty, J.D. Katz, M.T. Velasquez, ISRN Rheumatol. 852954 (2014)  https://doi.org/10.1155/2014/852954
  6. 6.
    T. Joyce, Y.I. Chirino, M.-T. Natalia, P.-C. Jose, Eur. J. Pharmacol. 818, 554–568 (2018)CrossRefGoogle Scholar
  7. 7.
    V. Rani, G. Deep, R.K. Singh, K. Palle, U.C.S. Yadav, Life Sci. 148, 183–193 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Filippatos, C. Derdemezis, I. Gazi, E. Nakou, D. Mikhailidis, M. Elisaf, Drug Saf. 31, 53–65 (2008)CrossRefGoogle Scholar
  9. 9.
    A.F.G. Cicero, A. Colletti, Phytomed. 23, 1134–1144 (2016)CrossRefGoogle Scholar
  10. 10.
    A.E. Irondi, R.O. Mohammed, A.F. Balogun, H.I. Tajudeen, O.M. Aleshinloye, Oxid. Antioxid. Med. Sci. 8(1), 1–10 (2018)CrossRefGoogle Scholar
  11. 11.
    U. Eriksson, U. Danilczyk, J.M. Penninger, Curr. Biol. 12, R745–R752 (2002)CrossRefGoogle Scholar
  12. 12.
    C.E. Berry, J.M. Hare, J. Physiol. 555, 589–606 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.N. Sreerama, Y. Takahashi, K. Yamaki, J. Food Sci. 77(9), C927–C933 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Tan, S.K.C. Chang, J. Funct. Foods 38(Part B), 644–655 (2017)CrossRefGoogle Scholar
  15. 15.
    E.A. Irondi, O.O. Adebara, A. Olateju, A.A. Boligon, Int. J. Food Properties. 20(sup3), S3004–S3014 (2018)CrossRefGoogle Scholar
  16. 16.
    V. Vadivel, J.N. Cheong, H.K. Biesalski, LWT Food Sci. Technol. 47, 255–260 (2012)CrossRefGoogle Scholar
  17. 17.
    J.M. Awika, K.G. Duodu, J. Funct. Foods 38(Part B), 686–697 (2017)CrossRefGoogle Scholar
  18. 18.
    R. Domínguez-Perles, N. Machado, A.S. Abraão, V. Carnide, L. Ferreira, M. Rodrigues, E.A.D.S. Rosa, A.I.R.N.A. Barros. J. Food Compos. Anal. 53, 69–76 (2016)CrossRefGoogle Scholar
  19. 19.
    L.O. Ojwang, L. Dykes, J.M. Awika, J. Agric. Food Chem. 60(14), 3735–3744 (2012)CrossRefGoogle Scholar
  20. 20.
    M.R. Segura-Campos, L.A. Chel-Guerrero, D.A. Betancur-Ancona, Process Biochem. 46(4), 864–872 (2011)CrossRefGoogle Scholar
  21. 21.
    J.-T. Lin, S.-C. Liu, C.-C. Hu, Y.-S. Shyu, C.-Y. Hsu, D.-J. Yang, Food Chem. 190, 520–528 (2016)CrossRefGoogle Scholar
  22. 22.
    A.M. Engida, N.S. Kasim, Y.A. Tsigie, S. Ismadji, L.H. Huynh, Y. Ju, Indus. Crops Prod. 41, 392–396 (2013)CrossRefGoogle Scholar
  23. 23.
    P.E.R. Bitencourt, L.M. Ferreira, L.O. Cargnelutti, L. Denardi, A.A. Boligon, M. Fleck, R. Brandão, M.L. Athayde, L. Cruz, R.A. Zanetted, S.H. Alves, M.B. Moretto, Indus. Crops Prod. 83, 400–407 (2016)CrossRefGoogle Scholar
  24. 24.
    S.H. Eom, M.S. Lee, E.W. Lee, Y.M. Kim, T.H. Kim, Phytother. Res. 27, 148–151 (2013)CrossRefGoogle Scholar
  25. 25.
    D.W. Cushman, H.S. Cheung, Biochem. Pharmacol. 20, 1637–1648 (1971)CrossRefGoogle Scholar
  26. 26.
    Y.I. Kwon, E. Apostolidis, K. Shetty, J. Food Biochem. 32, 15–31 (2008)CrossRefGoogle Scholar
  27. 27.
    Y.M. Kim, Y.K. Jeong, M.H. Wang, Y.H. Lee, H.I. Rhee, Nutr. 21, 756–761 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Osada, M. Tsuchimoto, H. Fukushima, K. Takahashi, S. Kondo, M. Hasegawa, K. Komoriya, Eur. J. Pharmacol. 241, 183–188 (1993)CrossRefGoogle Scholar
  29. 29.
    R.L. Puntel, C.W. Nogueira, J.B.T. Rocha, Neurochem. Res. 30, 225–235 (2005)CrossRefGoogle Scholar
  30. 30.
    M. Oyaizu, Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307–315 (1986)CrossRefGoogle Scholar
  31. 31.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Rad. Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  32. 32.
    G. Cervato, M. Carabelli, S. Gervasio, A. Cittera, R. Cazzola, B. Cestaro, J. Food Biochem. 24, 453–465 (2000)CrossRefGoogle Scholar
  33. 33.
    M.R.B. Lemos, E.M. Siqueira, S.F. Arruda, R.C. Zambiazi, Food Res. Int. 48, 592–597 (2012)CrossRefGoogle Scholar
  34. 34.
    F.A.L. Juhaimi, M.M. Özcan, K. Ghafoor, E.E. Babiker, Food Chem. 243, 414–419 (2018)CrossRefGoogle Scholar
  35. 35.
    S.K. Chang, C. Alasalvar, B.W. Bolling, F. Shahidi, J. Funct. Foods. 26, 88–122 (2016)CrossRefGoogle Scholar
  36. 36.
    B. Zhang, Z. Deng, D.D. Ramdath, Y. Tang, P.X. Chen, R. Liu, Q. Liu, R. Tsao, Food Chem. 172, 862–872 (2015)CrossRefGoogle Scholar
  37. 37.
    T.H. Stanley, C.B.V. Buiten, S.A. Baker, R.J. Elias, R.C. Anantheswaran, J.D. Lambert, Food Chem. 255, 414–420 (2018)CrossRefGoogle Scholar
  38. 38.
    T.K. Ma, K.K. Kam, B.P. Yan, Y.Y. Lam, Br. J. Pharmacol. 160, 1273–1292 (2010)CrossRefGoogle Scholar
  39. 39.
    S.K. Hyun, H. Lee, S.S. Kang, H.Y. Chung, J.S. Choi, Phytother. Res. 23, 178–184 (2009)CrossRefGoogle Scholar
  40. 40.
    S.A. Tucci, E.J. Boyland, J.C.G. Halford, Diabetes Metab. Syndr. Obes. 3, 125–143 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Dalar, I. Konczak, Indus. Crops Prod. 4, 383–390 (2013)CrossRefGoogle Scholar
  42. 42.
    C.N. Kunyanga, J.K. Imungi, M. Okoth, C. Momanyi, H.K. Biesalski, V. Vadivel, J. Food Sci. 76(4), C560–C567 (2011)CrossRefGoogle Scholar
  43. 43.
    A. Chandrasekara, F. Shahidi, J. Funct. Foods 3, 159–170 (2011)CrossRefGoogle Scholar
  44. 44.
    H.M. Kramer, G. Curhan, Am. J. Kidney Dis. 40, 37–42 (2002)CrossRefGoogle Scholar
  45. 45.
    A. Villiger, F. Sala, A. Suter, V. Butterweck, Phytomed. 22, 138–144 (2015)CrossRefGoogle Scholar
  46. 46.
    G. Nagarani, A. Abirami, P. Siddhuraju, Food Sci. Hum. Wellness. 3, 36–46 (2014)CrossRefGoogle Scholar
  47. 47.
    M.E. Orqueda, I.C. Zampini, S. Torres, M.R. Alberto, L.L.P. Ramos, G. Schmeda-Hirschmann, M.I. Isla, J. Funct. Foods 37, 531–540 (2017)CrossRefGoogle Scholar
  48. 48.
    E.J. Llorent-Martínez, P. Ortega-Barrales, G. Zengin, A. Mocan, M.J. Simirgiotis, R. Ceylan, S. Uysal, A. Aktumsek, Food Chem. Toxicol. 107(Pt B), 609–619 (2017)CrossRefGoogle Scholar
  49. 49.
    S. Chanda, R. Dave, Afr. J. Microbiol. Res. 3, 981–996 (2009)Google Scholar
  50. 50.
    K. Takemoto, M. Tanaka, H. Iwata, R. Nishihara, K. Ishihara, D.H. Wang, K. Ogino, K. Taniuchi, N. Masuoka, Clin. Chimica Acta. 407(1–2), 43–46 (2009)CrossRefGoogle Scholar
  51. 51.
    J.L. Ward, K. Poutanen, K. Gebruers, V. Piironen, A.M. Lampi, L. Nystrom, A.A.M. Andersson, P. Aman, D. Boros, M. Rakszegie, Z. Bedo, P.R. Shewry, J. Agric. Food Chem. 56, 9699–9709 (2008)CrossRefGoogle Scholar
  52. 52.
    T.S. Samaras, P.A. Camburn, S.X. Chandra, M.H. Gordon, J.M. Ames, Antioxidant properties of kilned and roasted malts. J. Agric. Food Chem. 53, 8068–8074 (2005)CrossRefGoogle Scholar
  53. 53.
    V. Vadivel, W. Stuetz, V. Scherbaum, H.K. Biesalski, J. Food Compos. Anal. 24, 935–943 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emmanuel Anyachukwu Irondi
    • 1
    Email author
  • Ayomide Oluwaseyi Ogunsanmi
    • 1
  • Rafiu Sadiq Ahmad
    • 1
  • Emmanuel Oladipipo Ajani
    • 1
  • Bosede Mofoluwake Adegoke
    • 1
    • 2
  • Aline Augusti Boligon
    • 3
  1. 1.Department of BiochemistryKwara State UniversityMaleteNigeria
  2. 2.Department of Applied SciencesOsun State PolytechnicIreeNigeria
  3. 3.Phytochemical Research Laboratory, Department of Industrial PharmacyFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations