Characterization of amaranth and bean flour blends and the impact on quality of gluten-free breads

  • S. LiuEmail author
  • D. Chen
  • J. Xu
Original Paper


Both amaranth and bean flours were higher in protein, minerals and vitamins than whole wheat flour along with gluten-free benefits. Nutritious gluten-free breads were developed using amaranth flour combined with 15% or 30% soybean, lupin, or navy bean flour, respectively. Amaranth and bean flours exhibited higher water holding capacity than whole wheat flour. The pasting property of amaranth flour was lower than that of whole wheat flour but higher than bean flours. All blends revealed shear thinning properties that are important for mouthfeel and industrial applications. Volumes of breads using amaranth-soy 85:15 and 70:30 and amaranth-lupin 85:15 were larger than amaranth bread, and had less reductions compared to whole wheat bread. The amaranth bread and breads substituted with soybean, lupin and navy bean flours showed significantly higher or similar springiness compared to the whole wheat flour breads because of their high proteins and water holding capacity. The firmness of bread using amaranth-soy 85:15 and 70:30, and amaranth-lupin 85:15 was improved by amaranth, which was very close to whole wheat bread. Amaranth breads with bean flours added high-value plant protein and nutrients in foods along with enhancing health benefits compared to the gluten-free bread using starches currently on market.


Amaranth Bread quality Gluten-free bread Navy bean Rheology Soybean 



  1. 1.
    E. Gallagher, T.R. Gormley, E.K. Arendt, Trends Food Sci. Technol. 15, 143–152 (2004). CrossRefGoogle Scholar
  2. 2.
    USDA National Nutrient Database. (2018). Assessed 30 May 2018
  3. 3.
    L.R. Myers, H.D. Putnam, Growing grain amaranth as a specialty crop. In: Crop systems. University of Minnesota. FS-03458-GO. (1988)Google Scholar
  4. 4.
    D.M. Martirosyan, L.A. Miroshnichenko, S.N. Kulakova, A.V. Pogojeva, V.I. Zoloedov, Lipids Health Dis. 6, 1 (2007). CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    C.L. Handa, U.R. Couto, A.H. Vicensoti, S.R. Georgetti, E.I. Ida, Food Chem. 152, 56–65 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    E.G. De Mejia, T. Bradford, C. Hasler, Nutr. Rev. 61, 239–246 (2003)CrossRefPubMedGoogle Scholar
  7. 7.
    I.S. Dalaram, Potravinarstvo Slovak J. Food Sci. 11, 26–34 (2017)Google Scholar
  8. 8.
    R. McPherson, Dietary fiber―A perspective. In: Dietary fiber in human nutrition, CRC handbook, 2nd edn., ed. by G.A. Spiller (CRC Press, Boca Raton, FL, 1992), pp. 7–11 ed byGoogle Scholar
  9. 9.
    V. Ha, J.L. Sievenpiper, R.J. de Souza, V.H. Jayalath, A. Mirrahimi, A. Agarwal, L. Chiavaroli, S. Blanco Mejia, F.M. Sacks, M. Di Buono, A.M. Bernstein, L.A. Leiter, P.M. Kris-Etherton, V. Vuksan, R.P. Bazinet, R. Josse, J. Beyene, C.W. Kendall, D.J. Jenkins, Can. Med. Assoc. J. 186, E252–E262 (2014)CrossRefGoogle Scholar
  10. 10.
    Consultative Group for International Agricultural Research. Improving Nutrition and Health (2018) Accessed 15 June 2018
  11. 11.
    J.A. Ayo, Int. J. Food Prop. 4, 341–351 (2001). CrossRefGoogle Scholar
  12. 12.
    P.A. Akin, R.A. Miller, Cereal Chem. 94, 897–902 (2017)CrossRefGoogle Scholar
  13. 13.
    B.I.O. Ade-Omowaye, K.A. Taiwo, N.M. Eshtiaghi, A. Angersbac, D. Knorr, Innov. Food Sci. Emerg. Technol. 4, 177–188 (2003). CrossRefGoogle Scholar
  14. 14.
    A.A.C.C. International, Approved methods of analysis (Methods 32-23.01, 32-25.01, and 44-15.02), 11th edn (AACC International, St. Paul, 2010)Google Scholar
  15. 15.
    SAS Institute INC, The SAS ® system for Windows ®, version 8e (SAS, Cary, 1999)Google Scholar
  16. 16.
    University of Maryland Medical Center. K. Vitamin (2017) Accessed 05 Apr 2017
  17. 17.
    S. Qiu, M.P. Yadav, L. Yin, Food Chem. 230, 225–233 (2017)CrossRefPubMedGoogle Scholar
  18. 18.
    H.M. Lai, H.-H. Cheng, Int. J. Food Sci. Technol. 39, 201–212 (2004)CrossRefGoogle Scholar
  19. 19.
    I.L. Batey, Interpretation of RVA curves. Chapter 2. In: RVA hand book, ed. by G.B. Crosbie, A.S. Ross (AACC international, St Paul, 2007)Google Scholar
  20. 20.
    Newport Scientific Pty. Ltd. The application manual for the rapid visco analyser (Newport Scientific Pty. Ltd, Warrriewood, 1998)Google Scholar
  21. 21.
    S. Ragaee, E.-S.M. Abdel-Aal, Food Chem. 95, 9–18 (2006)CrossRefGoogle Scholar
  22. 22.
    I.L. Batey, B.M. Curtin, Cereal Chem. 77, 754–760 (2000)CrossRefGoogle Scholar
  23. 23.
    H.A. Fonseca-Florido, C.A. Gómez-Aldapa, G. López-Echevarría, G. Velazquez, E. Morales-Sánchez, J. Castro-Rosas, G. Méndez-Montealvo, LWT Food Sci. Technol. 87, 280–286 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Corke, Specialty Cereal and Noncereal Starches. Chapter 4. In: The RVA Handbook, ed. by G.B. By, Crosbie, A.S. Ross (AACC International, St. Paul, 2007), p. 55Google Scholar
  25. 25.
    N.G. Gravier, N.E. Zaritzky, A.N. Califano, J. Food Sci. 9, 123–128 (2004). CrossRefGoogle Scholar
  26. 26.
    J.C. Salamone, Polymeric materials encyclopedia (CRC Press, St. Paul, 1996)Google Scholar
  27. 27.
    A.S. Szczesniak, E. Farkas, J. Food Sci. 27, 381–385 (1962). CrossRefGoogle Scholar
  28. 28.
    V. Giannone, M. Giarnetti, A. Spina, A. Todaro, B. Pecorino, C. Summo, F. Caponio, V.M. Paradiso, A. Pasqualone, Food Chem. 241, 242–249 (2018)CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Functional Food ResearchNational Center for Agricultural Utilization Research, Agricultural Research Service, US Department of AgriculturePeoriaUSA
  2. 2.Plant Polymer ResearchNational Center for Agricultural Utilization Research, Agricultural Research Service, US Department of AgriculturePeoriaUSA

Personalised recommendations