Advertisement

Determination of the structural stability of a premix powder through the critical water activity

  • Yunia Verónica García-TejedaEmail author
  • Evangelina García-Armenta
  • Juan Martín Martínez-Audelo
  • Víctor Barrera-Figueroa
Original Paper
  • 16 Downloads

Abstract

This paper analyses the structural stability of a premix powder that consists of a mixture of whey protein isolate, soy protein isolate, sodium caseinate, carrot juice, and honey bee, which are mixed together by spray-drying. The structural stability of the powder is determined by means of its critical water activity (RHc) at 25 °C, which is determined by three different procedures, namely, by the conventional graphical method, by calculating the inflection points in the adsorption isotherms, and by digital image analysis on the powders stored at different water activities (\(0.11\le a_{w}\le 0.53\)). These three methodological approaches can predict the value of RHc reliably.

Keywords

Carrot premix powder Structural stability Critical water activity Digital image analysis 

Mathematics Subject Classification

92C05 

Notes

Acknowledgements

YVGT acknowledges to CONACyT for the SNI program. VBF acknowledges to SIP project 20180438. The authors recognize the experimental support of the CNMN-IPN in the realization of the present work.

References

  1. 1.
    C.P.M.L. Fontes, J.L.A. Silva, N. Sampaio-Neta, J.C. da Costa Maria, S. Rodrigues, Dehydration of pre- biotic fruit drinks by spray drying: operating conditions and powder characterization. Food Bioprocess Technol. 7(10), 2942 (2014)CrossRefGoogle Scholar
  2. 2.
    M.K. Movahhed, M. Mohebbi, Spray drying and process optimization of carrot-celery juice. J. Food Process. Preserv. 40(2), 212 (2016)CrossRefGoogle Scholar
  3. 3.
    P.A. Picouet, C. Sárraga, S. Cofán, N. Belletti, M.D. Guàrdia, Effects of thermal and high-pressure treatments on the carotene content, microbiological safety and sensory properties of acidified and of non-acidified carrot juice. LWT–Food Sci. Technol. 62, 920 (2015)Google Scholar
  4. 4.
    D.M. Cano-Higuita, H.A. Villa-Vélez, J. Telis-Romero, H.A. Váquiro, V.R.N. Telis, Influence of alternative drying aids on water sorption of spray dried mango mix powders: a thermodynamic approach. Food Bioprod. Process. 93, 19 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Muzaffar, P. Kumar, Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technol. 291, 322 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Araujo, Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr. Polym. 167, 317 (2017)CrossRefGoogle Scholar
  7. 7.
    H.T.L. Nguyen, N. Panyoyai, V.D. Paramita, N. Mantri, S. Kasapis, Physicochemical and viscoelastic properties of honey from medicinal plants. Food Chem. 241, 143 (2018)CrossRefGoogle Scholar
  8. 8.
    B. Nurhadi, Y.H. Roos, Dynamic water sorption for the study of amorphous content of vacuum-dried honey powder. Powder Technol. 301, 981 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Wang, W. Zhou, Water adsorption and glass transition of spray-dried soy sauce powders using maltodextrins as carrier. Food Bioprocess Technol. 6(10), 2791 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Nesterenko, I. Alric, F. Silvestre, V. Durrieu, Influence of soy proteins structural modifications on their microencapsulation properties: \(\alpha\)-tocopherol microparticle preparation. Food Res. Int. 48(2), 387 (2012)CrossRefGoogle Scholar
  11. 11.
    Q. Shi, Z. Fang, B. Bhandari, Effect of addition of whey protein isolate on spray-drying behavior of honey with maltodextrin as a carrier material. Drying Technol. 31(13–14), 1681 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Charve, G.A. Reineccius, Encapsulation performance of proteins and traditional materials for spray dried flavors. J. Agric. Food Chem. 57(6), 2486 (2009)CrossRefGoogle Scholar
  13. 13.
    A.M. Righetto, F.M. Netto, Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature acerola. Int. J. Food Prop. 8(2), 337 (2005)CrossRefGoogle Scholar
  14. 14.
    B.P. Carter, M.T. Galloway, G.S. Campbell, A.H. Carter, The critical water activity from dynamic dew-point isotherms as an indicator of crispness in low moisture cookies. J. Food Meas. Charact. 9(3), 463 (2015)CrossRefGoogle Scholar
  15. 15.
    M.J. Kirkby, The fractal geometry of nature. Earth Surf. Proc. Land. 8(4), 406 (1983)CrossRefGoogle Scholar
  16. 16.
    F. Mendoza, P. Dejmek, J.M. Aguilera, Colour and image texture analysis in classification of commercial potato chips. Food Res. Int. 40(9), 1146 (2007)CrossRefGoogle Scholar
  17. 17.
    American Association of Cereal Chemists (ed.), Approved methods of the AACC, revised October 1975, 8th edn. (Method 44-19, The Association: St. Paul, 1983)Google Scholar
  18. 18.
    M. Gordon, J.S. Taylor, Ideal copolymers and the second-order transitions of synthetic rubbers. i. non- crystalline copolymers. Rubber Chem. Technol. 26(2), 323 (1953)CrossRefGoogle Scholar
  19. 19.
    R.V. Tonon, D. Alexandre, M.D. Hubinger, R.L. Cunha, Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae mart.). J. Food Eng. 92(4), 425 (2009)CrossRefGoogle Scholar
  20. 20.
    S.S. Sablani, R.M. Syamaladevi, B.G. Swanson, A review of methods, data and applications of state diagrams of food systems. Food Eng. Rev. 2(3), 168 (2010)CrossRefGoogle Scholar
  21. 21.
    E.O. Timmermann, J. Chirife, H.A. Iglesias, Water sorption isotherms of foods and foodstuffs: bet or gab parameters? J. Food Eng. 48(1), 19 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Peleg, M.D. Normand, Estimation of the equilibrium water activity of multicomponent mixtures. Trends Food Sci. Technol. 3, 157 (1992)CrossRefGoogle Scholar
  23. 23.
    E. Bonilla, E. Azuara, C.I. Beristain, E.J. Vernon-Carter, Predicting suitable storage conditions for spray-dried microcapsules formed with different biopolymer matrices. Food Hydrocolloids 24(67), 633 (2010)CrossRefGoogle Scholar
  24. 24.
    E. García-Armenta, D.I. Téllez-Medina, L. Alamilla-Beltrán, H. Hernández-Sánchez, G.F. Gutiérrez-López, Morphometric analysis of transverse surface of fractured maltodextrin agglomerates. Int. J. Food Prop. 19(11), 2451 (2016)CrossRefGoogle Scholar
  25. 25.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379 (1948)CrossRefGoogle Scholar
  26. 26.
    R.M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610 (1973)CrossRefGoogle Scholar
  27. 27.
    Y. Suhag, V. Nanda, Evaluation of different carrier agents with respect to physico-chemical, functional and morphological characteristics of spray dried nutritionally rich honey powder. J. Food Process. Preserv. 40(6), 1429 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Jabbar, M. Abid, B. Hu, T. Wu, M.M. Hashim, S. Lei, X. Zhu, X. Zeng, Quality of carrot juice as influenced by blanching and sonication treatments. LWT–Food Sci. Technol. 55(1), 16 (2014)Google Scholar
  29. 29.
    P.P. Lewicki, The applicability of the gab model to food water sorption isotherms. Int. J. Food Sci. Technol. 32(6), 553 (1997)CrossRefGoogle Scholar
  30. 30.
    S. Radosta, Tp labuza, Moisture sorption: practical aspects of isotherm measurement and use. 150 seiten, 36 abb. american association of cereal chemists, st. paul, minnesota 1984. Food / Nahrung 29(1), 92 (1985)CrossRefGoogle Scholar
  31. 31.
    C. McLaughlin, T. Magee, The determination of sorption isotherm and the isosteric heats of sorption for potatoes. J. Food Eng. 35(3), 267 (1998)CrossRefGoogle Scholar
  32. 32.
    E. García-Armenta, D.I. Téllez-Medina, L. Alamilla-Beltrán, R. Arana-Errasquín, H. Hernández-Sánchez, G.F. Gutiérrez-López, Multifractal breakage patterns of thick maltodextrin agglomerates. Powder Technol. 266, 440 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Colín-Orozco, J. Chanona-Pérez, M.J. de Perea-Flores, R. Pedroza-Islas, Changes in large- deformation properties during dough fermentation by lactobacillus strains and their relationship with microstructure. Rev. Mex. Ing. Quim. 13(2), 457 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalCity of MexicoMexico
  2. 2.Facultad de Ciencias Químico BiológicasUniversidad Autónoma de SinaloaCuliacánMexico
  3. 3.Instituto Politécnico Nacional, Sección de Estudios de Posgrado e InvestigaciónUPIITA. Avenida Instituto Politécnico NacionalCity of MexicoMexico

Personalised recommendations