Effect of different drying methods on the physical properties and antioxidant activities of Hibiscus cannabinus leaves

  • Yan Yi Sim
  • Kar Lin NyamEmail author
Original Paper


Kenaf (Hibiscus cannabinus L.) has become a valuable industrial crop in Malaysia as a source of natural fibrous stem. Recently, the leaves has been also considered as a source of industrial products. Besides, the kenaf leaves can make into tea. Being a perishable, storage is challenging, hence the aim of this study was to evaluate the effects of different drying methods on the physical properties and antioxidant activities of kenaf leaves. Analysis of total flavonoid content (TFC) and total phenolic content (TPC) were also carried out. The sample retained the highest antioxidant activities was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic and flavonoid compounds. Freeze dried sample was found to have the best quality in terms of color retention and antioxidant activities compared with those subjected to room, microwave, vacuum oven and oven drying. Freeze dried sample retained the highest antioxidant activities as shown by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, and ferric reducing antioxidant power (FRAP) assay. Kenaf leaves tea (KLT) contained kaempferol, caffeic acid, tannic acid, catechin hydrate and chlorogenic acid, which can be used as sources of alternative antioxidant in food and biopharmaceuticals industry. There were positive correlation relationship between all antioxidant analysis, phenolic and flavonoid compounds presented in the KLT. Microwave drying, which is low in operating cost and time saving can be the alternative to freeze drying. Further studied can be undertaken to optimize the condition of different drying methods.


2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay Ferric reducing antioxidant power (FRAP) assay Kaempferol Caffeic acid 



  1. 1.
    E. Y. Alexopoulou, M. Papattheohari, A. Christou, Monti, Kenaf: A multi-purpose crop for several industrial applications, 1st edn. (Springer-verlag, London, 2013), pp. 1–15Google Scholar
  2. 2.
    A. Pascoal, R. Quirantes-Piné, A. Fernando, E. Alexopoulou, A. Segura-Carretero, Ind Crops. Prod. 78, 116–123 (2015)Google Scholar
  3. 3.
    M.Y. Masnira, R.A. Halim, M.Y. Rafii, S. Mohd Jani, M.Y. Martini, J. ISSAAS. 21(2), 129–142 (2015)Google Scholar
  4. 4.
    S. Chew, C. Tan, K. Nyam, Sep. Purif. Technol. 188, 379–385 (2017)Google Scholar
  5. 5.
    S.C. Lee, J.H. Kim, S.M. Jeong, D.R. Kim, J. Agric. Food Chem. 51, 4400–4403 (2003)Google Scholar
  6. 6.
    G.A. Agbor, J.E. Oben, J.Y. Ngogang, Afr. J. Biotechnol. 4, 833–837 (2005)Google Scholar
  7. 7.
    C.P. Khare, Indian medical plants, An Illustrated dictionary, 1st edn. (Springer, London, 2007), p. 16Google Scholar
  8. 8.
    C.W. Jin, A.K. Ghimeray, L. Wang, M.L. Xu, J.P. Piao, D.H. Cho, J. Med. Plants Res. 7(17), 1121–1128 (2013)Google Scholar
  9. 9.
    M. Kobaisy, M.R. Tellez, C.L. Webber, E.E. Dayan, K.K. Schrader, D.E. Wedge, J. Agric. Food Chem. 49, 3768–3771 (2001)Google Scholar
  10. 10.
    D. Kubmarawa, I.F.H. Andenyang, A.M. Magomya, Afr. J. Food Sci. 3, 233–236 (2009)Google Scholar
  11. 11.
    S. Datta, A. Das, S. Basfore, T. Seth, Value addtion of horti-cultural crops: recent trends and future directions, 1st edn. (Springer, New Delhi, 2015), pp. 179–189Google Scholar
  12. 12.
    V. Orsat, V. Changrue, G.S. Vijaya Raghavan, Stewart Postharvest Rev. 2(6), 1–7 (2006)Google Scholar
  13. 13.
    I. Doymaz, J. Food Process. Preserv. 39(6), 933–939 (2015)Google Scholar
  14. 14.
    Y. Wong, H. Lau, C. Tan, K. Long, K. Nyam, Sci. World J. 2014, 1–8 (2014)Google Scholar
  15. 15.
    J.C. Liu, Z.G. Jiao, C.L. Zhang, W.B. Yang, H. Liu, Z.Z. Lv, J. Food Meas. Charact. (2018) Google Scholar
  16. 16.
    L. Méndez-Lagunas, J. Rodríguez-Ramírez, M. Cruz-Gracida, S. Sandoval-Torres, G. Barriada-Bernal, Food Chem. 230, 174–181 (2017)Google Scholar
  17. 17.
    T. Yen, N. Vu, J. Chem. Phys. 1878(1), 661–672 (2017)Google Scholar
  18. 18.
    E.W.C. Chan, Y.Y. Lim, S.K. Wong, K.K. Lim, S.P. Tan, F.S. Lianto, M.Y. Yong, Food Chem 113, 166–172 (2009)Google Scholar
  19. 19.
    L. Edemhanria, I. Ebhohimen, A. Amama, B. Olubokun, E. Okoh, Int. J. Eng. Sci. 6(8), 23–28 (2017)Google Scholar
  20. 20.
    K. Youssef, S. Mokhtar, J. Nutr. Food Sci. 4(6), 1111–1116 (2014)Google Scholar
  21. 21.
    Y.Y. Lim, J. Murtijaya, LWT—Food Sci. Technol. 40(9), 1664–1669 (2007)Google Scholar
  22. 22.
    H. Ogbunugafo, F. Eneh, A. Ozumba, M. Igwo-Ezikp, J. Okpuzor, I. Igwilo, S. Adenekan, O. Onyekwelu, Pak. J. Nutr. 10(5), 409–414 (2011)Google Scholar
  23. 23.
    S.R. Shah, C.I. Ukaegbu, H.A. Hamid, O.R. Alara, J. Food Meas. Charact. 1–15 (2018)Google Scholar
  24. 24.
    A. Floegel, D.O. Kim, S.J. Chung, S.I. Koo, O.K. Chun, J. Food. Compost. Anal. 24(7), 1043–1048 (2011)Google Scholar
  25. 25.
    P.C. Wootton-Beard, A. Moran, L. Ryan, Food Res. Int. 44(1), 217–224 (2011)Google Scholar
  26. 26.
    Q. Meng, H. Fan, Y. Li, L. Zhang, J. Food Meas. Charact. 11, 1128–1137 (2017)Google Scholar
  27. 27.
    M. Braga, E. Vieira, T. de Oliveira, Food Chem 265, 308–315 (2018)Google Scholar
  28. 28.
    A. Buchaillot, N. Caffin, B. Bhandari, Dry. Technol. 27, 445–450 (2009)Google Scholar
  29. 29.
    L. Zhou, Y. Wang, X. Hu, J. Wu, X. Liao, Innov. Food Sci. Emerg. Technol. 10(3), 321–327 (2009)Google Scholar
  30. 30.
    J. Tan, Y. Lim, L. Siow, J. Tan, J. Food Process. Preserv. 39(6), 2811–2819 (2015)Google Scholar
  31. 31.
    Z. Yang, A.J. Russell, in Enzymatic reactions in organic media, ed. by A.M.P. Koskinen, A.M. Klibanov (Blackie Academic & Professional, London, 1996), p. 49Google Scholar
  32. 32.
    A.P. Frank, Y.P. Heather, A handbook of food processing, 2nd edn. (Springer Science & Business Media, Germany, 2012), pp. 332–383Google Scholar
  33. 33.
    S. Gahler, K. Otto, V. Bohm, Agric Food Chem. 51, 7962–7968 (2003)Google Scholar
  34. 34.
    C.H. Chang, H.Y. Lin, C.Y. Chang, Y.C. Liu, J. Food. Eng. 77, 478–485 (2006)Google Scholar
  35. 35.
    J. Sánchez-Rangel, J. Benavides, J. Heredia, L. Cisneros-Zevallos, D. Jacobo-Velázquez, Anal Methods 5(21), 5990–5999 (2013)Google Scholar
  36. 36.
    S. Kumar, P. Manoj, N. Shetty, P. Giridhar, J. Sci. Food Agric 95(9), 1812–1820 (2014)Google Scholar
  37. 37.
    R. Mphahlele, O. Fawole, N. Makunga, U. Opara, BMC. Complement. Altern. Med. 16(1), 117–121 (2016)Google Scholar
  38. 38.
    A. Tomaino, F. Cimino, V. Zimbalatti, V. Venuti, V. Sulfaro, A. De Pasquale, A. Saija, Food Chem 89(4), 549–554 (2005)Google Scholar
  39. 39.
    B. Darfour, L.K. Asare, D.O. Ofosu, G.D. Achel, S.E. Achoribo, S. Agbenyegah, Eur. J. Med. Chem. 4, 324–1335 (2014)Google Scholar
  40. 40.
    M.T. Gilbert, High performances liquid chromatography, 1st edn. (IOP publishing, United Kingdom, 2013), pp. 5–12Google Scholar
  41. 41.
    Y. Zuo, Talanta. 57(2), 307–316 (2002)Google Scholar
  42. 42.
    J.H. Ryu, S.J. Kwon, J.W. Ahn, Y.D. Jo, S.H. Kim, S.W. Jeong, M.J. Lee, J.B. Kim, S.Y. Kang, Plant Biotechnol. J. 44, 191–202 (2017)Google Scholar
  43. 43.
    K.W. Chan, N.M.H. Khong, I. Iqbal, S.M. Mansor, M. Ismail, LWT—Food Sci. Technol. 53, 308–313 (2013)Google Scholar
  44. 44.
    N.S. Kai, T.A. Nee, E.L.C. Ling, T.C. Ping, L. Kamariah, N.K. Lin, Asian. Pac. J. Trop. Biomed. 8, 6–13 (2015)Google Scholar
  45. 45.
    A.A. Mariod, R.M. Ibrahim, M. Ismail, N. Ismail, Grasas Aceites 63, 167–174 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Nutrition, Faculty of Applied SciencesUCSI UniversityKuala LumpurMalaysia

Personalised recommendations