Advertisement

The bioactive efficiency of ultrasonic extracts from acorn leaves and green walnut husks against Bacillus cereus: a hybrid approach to PCA with the Taguchi method

  • Gokturk Ozturk
  • Ahmet E. Yetiman
  • Mahmut DoganEmail author
Original Paper
  • 106 Downloads

Abstract

The objective of this study was to investigate the usefulness of the hybrid approach using the Taguchi method (TM) and principal component analysis (PCA) in determining the optimum conditions for ultrasonic extracts of acorn leaves and green walnut husks, which potentially demonstrate the best bioactive efficiency against Bacillus cereus. First, an L36 (21 × 34) mixed level orthogonal array design was implemented, consisting of five factors: extract type, temperature, time, solvent and concentration, respectively. Also, the total phenolic content, antiradical activity, and antibiogram analyses were investigated by design, and signal-to-noise (S/N) ratios were calculated for each trial. An analysis of variance (ANOVA) was performed using S/N ratios to estimate the effects of the measured parameters and their interactions for a single-objective TM. Following that, PCA was used to normalize the S/N ratios for each response to calculate the multi-response performance index for measuring the effects of factors on all responses. In this study, the expected optimal factor levels for each experiment were found to be different for a single-objective TM and inadequate for interpreting all responses simultaneously. The results of the study showed that the optimal conditions for all responses with PCA-based TM was found to be a 5% concentration of acorn leave extract and 50% acetone at 60 °C for 60 min, with 136.96 mg g–1 gallic acid equivalent, 90.75% inhibited 2,2-diphenyl-1-picrylhydrazyl and 14.33 mm inhibition zone against B. cereus.

Keywords

Taguchi method Principal component analysis Bacillus cereus Phenolic Antimicrobial activity Hybrid approach 

Notes

Acknowledgements

We would like to thank ERU-TAUM (Erciyes University, Technology Research and Application Center) for letting us use their laboratory-type freeze-dryer.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    K.W. Wahle, I. Brown, D. Rotondo, S.D. Heys, Adv. Exp. Med. Biol. 698, 36 (2010)Google Scholar
  2. 2.
    S. Jafari, S. Saeidnia, M. Abdollahi, Curr. Pharm. Biotechnol. 15(4), 409 (2014)Google Scholar
  3. 3.
    M. Carocho, M.F. Barreiro, P. Morales, I.C.F.R. Ferreira, Compr. Rev. Food Sci. Food Saf. 13(4), 377 (2014)Google Scholar
  4. 4.
    WHO, Antibiotic resistance. http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/. Accessed 5 Feb 2018
  5. 5.
    A. Moure, J.M. Cruz, D. Franco, J.M. Dominguez, J. Sineiro, H. Dominguez, M.J. Nunez, J.C. Parajo, Food Chem. 72(2), 145 (2001)Google Scholar
  6. 6.
    N. Balasundram, K. Sundram, S. Samman, Food Chem. 99(1), 191 (2006)Google Scholar
  7. 7.
    F. Kallel, D. Driss, F. Chaari, L. Belghith, F. Bouaziz, R. Ghorbel, S.E. Chaabouni, Ind. Crops Prod. (2014)  https://doi.org/10.1016/j.indcrop.2014.07.047 Google Scholar
  8. 8.
    O.H. Lee, B.Y. Lee, Bioresour. Technol. 101(10), 3751 (2010)Google Scholar
  9. 9.
    B. Melgar, M.I. Dias, A. Ciric, M. Sokovic, E.M. Garcia-Castello, A.D. Rodriguez-Lopez, L. Barros, I. Ferreira, Ind. Crops Prod. 107, 353 (2017)Google Scholar
  10. 10.
    J.L. McKillip, Antonie Van Leeuwenhoek 77(4), 393 (2000)Google Scholar
  11. 11.
    A. Osimani, L. Aquilanti, F. Clementi, Int. J. Hosp. Manag. 72, 145 (2018)Google Scholar
  12. 12.
    A. Tewari, S. Abdullah, J. Food Sci. Technol. 52(5), 2500 (2015)Google Scholar
  13. 13.
    E.J. Bottone, Clin. Microbiol. Rev. 23(2), 382 (2010)Google Scholar
  14. 14.
    P.E. Granum, in Applications and systematics of Bacillus and relatives, ed. by R. Berkeley, M.N. Heyndrickx, P. de Vos (Blackwell, Oxford, 2002), p. 37Google Scholar
  15. 15.
    H. Jun, J. Kim, J. Bang, H. Kim, L.R. Beuchat, J.H. Ryu, Int. J. Food Microbiol. 160(3), 260 (2013)Google Scholar
  16. 16.
    L.R. Beuchat, in Microbial Food Contamination, ed. by C.L. By, S. Wilson, Droby (CRC Press, Boca Raton, 2000), p. 149Google Scholar
  17. 17.
    T.K. Lim, Edible Medicinal and Non-medicinal Plants, vol. 3 (Springer, New York, 2012), pp. 70–72Google Scholar
  18. 18.
    J. Azmir, I.S.M. Zaidul, M.M. Rahman, K.M. Sharif, A. Mohamed, F. Sahena, M.H.A. Jahurul, K. Ghafoor, N.A.N. Norulaini, A.K.M. Omar, J. Food Eng. 117(4), 426 (2013)Google Scholar
  19. 19.
    B.K. Tiwari, Trac-Trend Anal. Chem. 71, 100 (2015)Google Scholar
  20. 20.
    A. Phaniendra, D.B. Jestadi, L. Periyasamy, Indian J. Clin. Biochem. 30(1), 11 (2015)Google Scholar
  21. 21.
    V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacogn. Rev. 4(8), 118 (2010)Google Scholar
  22. 22.
    H.M. Ali, A. Abo-Shady, H.A.S. Eldeen, H.A. Soror, W.G. Shousha, O.A. Abdel-Barry, A.M. Saleh, Chem. Cent. J. 7(1), 53 (2013)Google Scholar
  23. 23.
    M.J. Alves, I.C. Ferreira, H.J. Froufe, R. Abreu, A. Martins, M. Pintado, J. Appl. Microbiol. 115(2), 346 (2013)Google Scholar
  24. 24.
    J.P. Salminen, T. Roslin, M. Karonen, J. Sinkkonen, K. Pihlaja, P. Pulkkinen, J. Chem. Ecol. 30(9), 1693 (2004)Google Scholar
  25. 25.
    C. Moctezuma, A. Hammerbacher, M. Heil, J. Gershenzon, R. Méndez-Alonzo, K. Oyama, J. Chem. Ecol. 40(5), 458 (2014)Google Scholar
  26. 26.
    M. Gulluce, A. Adiguzel, H. Ogutcu, M. Sengul, I. Karaman, F. Sahin, Phytother. Res. 18(3), 208 (2004)Google Scholar
  27. 27.
    V. Nour, I. Trandafir, S. Cosmulescu, J. Chromatogr. Sci. 51(9), 883 (2013)Google Scholar
  28. 28.
    M. Carvalho, P.J. Ferreira, V.S. Mendes, R. Silva, J.A. Pereira, C. Jeronimo, B.M. Silva, Food Chem. Toxicol. 48(1), 441 (2010)Google Scholar
  29. 29.
    A. Fernandez-Agullo, E. Pereira, M.S. Freire, P. Valentao, P.B. Andrade, J. Gonzalez-Alvarez, J.A. Pereira, Ind. Crops Prod. 42, 126 (2013)Google Scholar
  30. 30.
    F. Stampar, A. Solar, M. Hudina, R. Veberic, M. Colaric, Food Chem. 95(4), 627 (2006)Google Scholar
  31. 31.
    B.B. Shi, W.N. Zhang, X. Li, X.J. Pan, Int. J. Food Prop. 20, S2635 (2018)Google Scholar
  32. 32.
    I. Oliveira, A. Sousa, I.C. Ferreira, A. Bento, L. Estevinho, J.A. Pereira, Food Chem. Toxicol. 46(7), 2326 (2008)Google Scholar
  33. 33.
    N.E. Rocha-Guzman, J.A. Gallegos-Infante, R.F. Gonzalez-Laredo, R. Reynoso-Camacho, M. Ramos-Gomez, T. Garcia-Gasca, M.E. Rodriguez-Munoz, S.H. Guzman-Maldonado, L. Medina-Torres, B.A. Lujan-Garcia, Food Chem. 115(4), 1320 (2009)Google Scholar
  34. 34.
    M.R. Moreno-Jimenez, F. Trujillo-Esquivel, M.A. Gallegos-Corona, R. Reynoso-Camacho, R.F. Gonzalez-Laredo, J.A. Gallegos-Infante, N.E. Rocha-Guzman, M. Ramos-Gomez, Food Chem. Toxicol. 80, 144 (2015)Google Scholar
  35. 35.
    M.H. Xu, X.Y. Yang, M.R. Fu, Waste Biomass Valoriz. 7(5), 1159 (2016)Google Scholar
  36. 36.
    P.S. Makkar, B. Singh, Bioresour. Technol. 37(2), 185 (1991)Google Scholar
  37. 37.
    M.T. Moradi, A. Karimi, S. Alidadi, Chin. J. Nat. Med. 14(3), 196 (2016)Google Scholar
  38. 38.
    A. Bevilacqua, M. Corbo, M. Sinigaglia, Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Formatex Research Center, Badajoz, 2010), p. 1419Google Scholar
  39. 39.
    R.K. Roy, A Primer on the Taguchi Method, 2nd edn. (Society of Manufacturing Engineers, USA, 2010), pp. 9–24Google Scholar
  40. 40.
    R.S. Rao, C.G. Kumar, R.S. Prakasham, P.J. Hobbs, Biotechnol. J. 3(4), 510 (2008)Google Scholar
  41. 41.
    M.H. Oztop, S. Sahin, G. Sumnu, J. Food Eng. 79(1), 83 (2007)Google Scholar
  42. 42.
    Minitab Getting Started with Minitab 18. https://www.minitab.com/uploadedFiles/Documents/getting-started/MinitabGettingStarted_EN.pdf. Accessed 5 Feb 2017
  43. 43.
    R. Jeyapaul, P. Shahabudeen, K. Krishnaiah, Int. J. Adv. Manuf. Technol. 26(11–12), 1331 (2005)Google Scholar
  44. 44.
    J. Antony, Qual. Reliab. Eng. Int. 16(1), 3 (2000)Google Scholar
  45. 45.
    A.K. Dubey, V. Yadava, Opt. Lasers Eng. 46(2), 124 (2008)Google Scholar
  46. 46.
    T. Yih-Fong, C. Fu-Chen, Int. J. Mach. Mach. Mater. 1(1), 76 (2006)Google Scholar
  47. 47.
    R.L. Bradley, in Food Analysis, ed. by S.S. By, Nielsen (Springer, Boston, 2010), p. 85Google Scholar
  48. 48.
    H. Abdi, L.J. Williams, Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433 (2010)Google Scholar
  49. 49.
    M. Hayta, E.M. Iscimen, LWT-Food Sci. Technol. 77, 208 (2017)Google Scholar
  50. 50.
    K. Gezer, M. Duru, I. Kivrak, A. Turkoglu, N. Mercan, H. Turkoglu, S. Gulcan, Afr. J. Biotechnol. 5 (20), 1924 (2006)Google Scholar
  51. 51.
    H. Baydar, O. Sağdiç, G. Özkan, T. Karadoğan, Food Control 15(3), 169 (2004)Google Scholar
  52. 52.
    A. Soto-Vaca, A. Gutierrez, J.N. Losso, Z.M. Xu, J.W. Finley, J. Agric. Food Chem. 60(27), 665 (2012)Google Scholar
  53. 53.
    K.M. Hammi, A. Jdey, C. Abdelly, H. Majdoub, R. Ksouri, Food Chem. 184, 80 (2015)Google Scholar
  54. 54.
    J.A. Sanchez-Burgos, M.V. Ramirez-Mares, M.M. Larrosa, J.A. Gallegos-Infante, R.F. Gonzalez-Laredo, L. Medina-Torres, N.E. Rocha-Guzman, Ind. Crops Prod. 42, 57 (2013)Google Scholar
  55. 55.
    B.M. Popovic, D. Stajner, R. Zdero, S. Orlovic, Z. Galic, Sci. World J. (2013)  https://doi.org/10.1155/2013/134656 Google Scholar
  56. 56.
    M.J. Rivas-Arreola, N.E. Rocha-Guzman, J.A. Gallegos-Infante, R.F. Gonzalez-Laredo, M. Rosales-Castro, J.R. Bacon, R. Cao, A. Proulx, P. Intriago-Ortega, Pak. J. Biol. Sci. 13(11), 537 (2010)Google Scholar
  57. 57.
    M. Markom, M. Hasan, W.R.W. Daud, H. Singh, J.M. Jahim, Sep. Purif. Technol. 52(3), 487 (2007)Google Scholar
  58. 58.
    N. Trabelsi, W. Megdiche, R. Ksouri, H. Falleh, S. Oueslati, B. Soumaya, H. Hajlaoui, C. Abdelly, LWT-Food Sci. Technol. 43(4), 632 (2010)Google Scholar
  59. 59.
    M. Ahmed, H. Fatima, M. Qasim, B. Gul, BMC Complement Altern. Med. 17, 386 (2017)Google Scholar
  60. 60.
    C. Alasalvar, M. Karamac, R. Amarowicz, F. Shahidi, J. Agric. Food Chem. 54(13), 4826 (2006)Google Scholar
  61. 61.
    A. Mokhtarpour, A.A. Naserian, R. Valizadeh, M. Danesh Mesgaran, Annu. Rev. Res. Biol. 4(8), 1330 (2014)Google Scholar
  62. 62.
    R. Tabaraki, S. Rastgoo, Korean J. Chem. Eng. 31(4), 676 (2014)Google Scholar
  63. 63.
    K. Ghasemi, Y. Ghasemi, A. Ehteshamnia, S.M. Nabavi, S.F. Nabavi, M.A. Ebrahimzadeh, F. Pourmorad, J. Med. Plant Res. 5(7), 1128 (2011)Google Scholar
  64. 64.
    S.B. Kedare, R. Singh, J. Food Sci. Technol. 48(4), 412 (2011)Google Scholar
  65. 65.
    N. Pawar, S. Pai, M. Nimbalkar, G. Dixit, Food Chem. 126(3), 1330 (2011)Google Scholar
  66. 66.
    I.F. Almeida, M.H. Amaral, P.C. Costa, M.F. Bahia, P. Valentão, P.B. Andrade, R.M. Seabra, T.M. Pereira, Biofactors 33(4), 267 (2008)Google Scholar
  67. 67.
    R. Tabaraki, A. Safari, F.A. Yeganeh, J. Appl. Chem. Res. 7(3), 67 (2013)Google Scholar
  68. 68.
    J. Jakopic, M. Mikulic-Petkovsek, A. Likozar, A. Solar, F. Stampar, R. Veberic, Food Chem. 124(3), 1100 (2011)Google Scholar
  69. 69.
    M.Y. Elahi, Y. Rouzbehan, Anim. Feed Sci. Technol. 140(1–2), 78 (2008)Google Scholar
  70. 70.
    R. Amarowicz, A. Troszynska, N. Barylko-Pikielna, F. Shahidi, J. Food Lipids 11(4), 278 (2004)Google Scholar
  71. 71.
    K.T. Chung, T.Y. Wong, C.I. Wei, Y.W. Huang, Y. Lin, Crit. Rev. Food Sci. Nutr. 38(6), 421 (1998)Google Scholar
  72. 72.
    F. Tian, B. Li, B. Ji, G. Zhang, Y. Luo, LWT-Food Sci. Technol. 42(7), 1289 (2009)Google Scholar
  73. 73.
    R.Y. Gan, K.W. Kong, H.B. Li, K. Wu, Y.Y. Ge, C.L. Chan, X.M. Shi, H. Corke, Front. Chem. 6, 39 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Food Technology Program, Kaman Vocational SchoolAhi Evran UniversityKırşehirTurkey
  2. 2.Food Engineering Department, Faculty of EngineeringErciyes UniversityKayseriTurkey
  3. 3.Tagem Food Analysis Center Co.Erciyes Teknopark AreaKayseriTurkey

Personalised recommendations