Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area

  • Liguori Loredana
  • Adiletta Giuseppina
  • Nazzaro Filomena
  • Fratianni Florinda
  • Di Matteo Marisa
  • Albanese DonatellaEmail author
Original Paper


Onion (Allium cepa L.) is a very important vegetable crop cultivated worldwide. The bulb is a major source of phytochemicals useful for human health and rich in sulphur compounds responsible for their typical odour and flavour. In this study, we investigated the volatile compounds and biochemical properties besides the antimicrobial activity of onion Montoro and Alife varieties, and of two ecotypes of Vatolla variety (spinning top and tapered shape), cropped in the southern Mediterranean area (Italy). For all investigated onions, the organosulphur compounds, mainly di- and trisulfides, are the most abundant compounds. Alife variety showed higher polyphenols amount (8.2 GAE mg/g dw) with respect to the lowest one (3.9 GAE mg/dw g) in spinning top Vatolla, as well as an higher antioxidant activity (42.37 µmol TE/g dw) about two-fold higher than those detected in the other varieties. All the onions showed low pungency level, confirming their popular classification as a sweet onion. The total content of soluble sugars ranged from 461 to 624 mg/g dw; malic acid was the major organic acid in Alife and Montoro varieties instead for both Vatolla ecotypes citric acid was the most abundant ones. The biochemical characterization highlighted the three onion varieties as a good source of bioactive compounds. The antimicrobial activity of the onion extracts pointed out an effective action against three Gram-positive species (B. cereus, L. innocua, S. aureus) and P. aeruginosa; consequently, they could represent a new source of natural antimicrobial agents.


Onion Sulphur compounds Antioxidant activity Polyphenols Antimicrobial activity 



  1. 1.
    E. Block, The organosulfur chemistry of the genus Allium implications for the organic chemistry of sulfur. Angewandte Chem. 31, 1135–1178 (1992)CrossRefGoogle Scholar
  2. 2.
    J. Lancaster, M. Boland, in Onions and Allied Crops, ed. by H.D. By, J.L. Rabinowitch, Brewster (CRC Press, Boca Raton, 1990), p. 33Google Scholar
  3. 3.
    N. Benkeblia, Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Lebensm-Wiss Technol. 37, 263–268 (2004)CrossRefGoogle Scholar
  4. 4.
    M.C. Yin, W.S. Cheng, Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci. 63, 23–28 (2003)CrossRefGoogle Scholar
  5. 5.
    N. Benkeblia, V. Lanzotti, Allium thiosulfinates: chemistry, biological properties and their potential utilization in food preservation. Food. 2, 193–201 (2007)Google Scholar
  6. 6.
    J.H. Kim, Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria. J. Nihon Univ. School Dent. 39, 136–141 (1997)CrossRefGoogle Scholar
  7. 7.
    C.P. Siegers, B. Steffen, A. Röbke, R. Pentz, The effects of garlic preparations against human tumor cell proliferation. Phytomedicine 1, 7–11 (1999)CrossRefGoogle Scholar
  8. 8.
    G. Griffiths, L. Trueman, T. Crowther, B. Thomas, B. Smith, Onions-a global benefit to health. Phytother. Res. 7, 603–615 (2002)CrossRefGoogle Scholar
  9. 9.
    G.G. Freeman, R.J. Wenham, A rapid spectophotometric method of determination of thiopropanal S-oxide (lachrymator) in onion (Allium cepa L.) and its significance in flavour studies. J. Sci. Food Agric. 25, 1529–1543 (1975)CrossRefGoogle Scholar
  10. 10.
    S. Schwimmer, W.J. Weston, Enzymatic development of pyruvic acid in onion as a measure of pungency. J. Agric. Food Chem. 9, 301–304 (1961)CrossRefGoogle Scholar
  11. 11.
    A. Lisanti, V. Formica, F. Ianni, B. Albertini, M. Marinozzi, R. Sardella, Antioxidant activity of phenolic extracts from different cultivars of Italian onion (Allium cepa) and relative human immune cell proliferative induction. Pharm. Biol. 5, 799–806 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Sharma, A.D. Assefa, S. Kim, E.Y. Ko, E.T. Lee, S. Park, Evaluation of total phenolics, flavonoids and antioxidant activity of 18 Korean onion cultivars: a comparative study. J. Sci. Food Agric. 94, 1521–1529 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Liguori, P. Russo, D. Albanese, M. Di Matteo, Aglianico wine dealcoholization tests, in Proceedings of 20th European Symposium on Computer Aided Process Engineering—Escape 20, ed. By S. Pierucci, G. Buzzi Ferraris, pp. 325–330 (2010)Google Scholar
  14. 14.
    L. Liguori, G. De Francesco, D. Albanese, A. Mincione, G. Perretti, M. Di Matteo, P. Russo, Impact of osmotic distillation on the sensory properties and quality of low alcohol beer. J Food Qual (2018). Google Scholar
  15. 15.
    G. Adiletta, L. Liguori, D. Albanese, P. Russo, M. Di Matteo, A. Crescitelli, Soft-seeded pomegranate (Punica granatum L.) varieties: preliminary characterization and quality changes of minimally processed arils during storage. Food Bioprocess Technol. 9, 1631–1641 (2017)CrossRefGoogle Scholar
  16. 16.
    V. Singleton, J. Rossi, Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol Vitic. 16, 144–158 (1965)Google Scholar
  17. 17.
    L. Liguori, G. De Francesco, P. Russo, D. Albanese, G. Perretti, M. Di Matteo, Quality improvement of low alcohol craft beer produced by evaporative pertraction. Chem. Eng. Trans. 43, 13–18 (2015)Google Scholar
  18. 18.
    L. Liguori, R. Califano, D. Albanese, F. Raimo, A. Crescitelli, M. Di Matteo, Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J Food Quality. 9, 191–200 (2017)Google Scholar
  19. 19.
    L. Liguori, P. Russo, D. Albanese, M. Di, Matteo, Evolution of quality parameters during red wine dealcoholization by osmotic distillation. Food Chem. 140, 68–75 (2013)CrossRefGoogle Scholar
  20. 20.
    S.D. Sarker, L. Nahar, Y. Kumarasamy, Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 42, 321–324 (2007)CrossRefGoogle Scholar
  21. 21.
    L. Caputo, F. Nazzaro, L.F. Souza, L. Aliberti, L. De Martino, F. Fratianni, R. Coppola, V. De Feo, Laurus nobilis: composition of essential oil and its biological activities. Molecules. 22(6), 930–941 (2017)CrossRefGoogle Scholar
  22. 22.
    M.S. Choi, D.J. Lee, J.Y. Kim, S.T. Lim, Volatile composition and sensory characteristics of onion powders prepared by convective drying. Food Chem. 231, 386–392 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Colina-Coca, D. González-Péna, E. Vega, B. De Ancos, C. Sánchez-Moreno, Novel approach for the determination of volatile compounds in processed onion by headspace gas chromatography-mass spectrometry (HS GC-MS). Talanta. 103, 137–144 (2013)CrossRefGoogle Scholar
  24. 24.
    V. Lanzotti, The analysis of onion and garlic. J. Chromatogr. A. 1112, 3–22 (2006)CrossRefGoogle Scholar
  25. 25.
    H. Kallio, L. Salorinne, Comparison of onion varieties by headspace gas chromatography—mass spectrometry. J. Agric. Food Chem. 38, 1560–1564 (1990)CrossRefGoogle Scholar
  26. 26.
    J.E. Lancaster, P.F. Reay, J.D. Mann, W.D. Bennett, J.R. Sedcole, Quality in New Zealand-grown onion bulbs-a survey of chemical and physical characteristics. N. Z. J. Exp. Agric 16, 279–285 (1988)Google Scholar
  27. 27.
    W.M. Randle, E. Block, M.H. Littlejohn, D. Putman, M.L. Bussard, Onion (Allium cepa L.) thiosulfinates respond to increasing sulfur fertility. J. Agric. Food Chem. 42, 2085–2088 (1994)CrossRefGoogle Scholar
  28. 28.
    S. Gorinstein, H. Leontowicz, M. Leontowicz, J. Namiesnik, K. Najman, J. Drzewiecki, M. Cvikrova, O. Martincova, E. Katrich, S. Trakhtenberg, Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 12, 4418–4426 (2008)CrossRefGoogle Scholar
  29. 29.
    D. Prakash, B.N. Singh, G. Upadhyay, Antioxidant and free radical scavenging activities of phenols fromonion (Allium cepa). Food Chem. 4, 1389–1393 (2007)CrossRefGoogle Scholar
  30. 30.
    K.R. Price, M.J.C. Rhodes, Analysis of the major flavonol glycosides present in four varieties of onion (Allium cepa) and changes in composition resulting from autolysis. J. Food Agric. 74, 331–339 (1997)CrossRefGoogle Scholar
  31. 31.
    I. Erlund, Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability and epidemiology. Nutr. Res. 24, 851–874 (2004)CrossRefGoogle Scholar
  32. 32.
    M.B. Kasikci, N. Bagdatlioglu, Bioavailability of quercetin. Curr. Res. Nutr. Food Sci. 1, 146–151 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Rodriguez Galdon, E.M. Rodriguez Rodriguez, C. Diaz Romero, Flavonoids in onion cultivars (Allium cepa L.). J. Food Sci. 8, C599–C605 (2008)CrossRefGoogle Scholar
  34. 34.
    I. Tedesco, V. Carbone, C. Spagnuolo, P. Minasi, G. Russo, Identification and quantification of flavonoids from two southern Italian cultivars of Allium cepa L., Tropea (Red Onion) and Montoro (Copper Onion), and their capacity to protect human erythrocytes from oxidative stress. J. Agric. Food Chem. 63, 5229–5238 (2015)CrossRefGoogle Scholar
  35. 35.
    K.A. Lombard, E. Peffley, E. Geoffriau, L. Thompson, A. Herring, Quercetin in onion (Allium cepa L.) after heat-treatment simulating home preparation. J. Food Compos. Anal. 18, 571–581 (2005)CrossRefGoogle Scholar
  36. 36.
    K. Dhumal, S. Datir, R. Pandey, Assessment of bulb pungency level in different Indian cultivars of onion (Allium cepa L.). Food Chem. 100, 1328–1330 (2007)CrossRefGoogle Scholar
  37. 37.
    C. Colina-Coca, B. De Ancos, C. Sánchez-Moreno, Nutritional composition of processed onion: S-Alk(en)yl-L-cysteine sulfoxides, organic acids, sugars, minerals, and vitamin C. Food Bioprocess Technol. 7, 289–298 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Crowther, H.A. Collin, B. Smith, A.B. Tomsett, D. O’Connor, M.G. Jones, Assessment of the flavour of fresh uncooked onions by taste-panels and analysis of flavour precursors, pyruvate and sugars. J. Sci. Food Agric. 1, 112–120 (2005)CrossRefGoogle Scholar
  39. 39.
    B. Rodrıguez Galdón, C. Tascón Rodríguez, E. Rodríguez Rodríguez, C. Díaz Romero, Organic acid contents in onion cultivars (Allium cepa L.). J. Agric. Food Chem. 15, 6512–6519 (2008)CrossRefGoogle Scholar
  40. 40.
    S.A. Petropoulos, A. Fernandes, L. Barros, I.C.F.R. Ferreira, G. Ntatsi, Morphological, nutritional and chemical description of ‘vatikiotiko’, an onion local ecotype from Greece. Food Chem. 182, 156–163 (2015)CrossRefGoogle Scholar
  41. 41.
    A.B. Hendrich, Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 1, 27–40 (2006)CrossRefGoogle Scholar
  42. 42.
    S. Shafiq, M. Shakir, Q. Ali, Medicinal uses of onion (Allium cepa L.): an overview. Life Sci. J. 6, 100–107 (2017)Google Scholar
  43. 43.
    S. Dziri, I. Hassen, S. Fatnassi, Y. Mrabet, H. Casabianca, B. Hanchi, K. Hosni, Phenolic constituents, antioxidant and antimicrobial activities of rosy garlic (Allium roseum var. odoratissimum). J. Funct. Foods. 4, 423–432 (2012)CrossRefGoogle Scholar
  44. 44.
    A. Cerulli, G. Lauro, M. Masullo, V. Cantone, B. Olas, B. Kontek, F. Nazzaro, G. Bifulco, S. Piacente, Cyclic diarylheptanoids from Corylus avellana green leafy covers: determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities. J Nat Prod. 6, 1703–1713 (2017)CrossRefGoogle Scholar
  45. 45.
    EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control), The European Union Summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 1, 1–165 (2015)Google Scholar
  46. 46.
    J. García-Lomillo, M.L. González-San José, R. Del Pino-García, M.D. Rivero-Pérez, P. Muñiz-Rodríguez, A new seasoning with potential effect against foodborne pathogens. Lebensm-Wiss Technol. 84, 338–343 (2017)CrossRefGoogle Scholar
  47. 47.
    F.J. Vázquez-Armenta, B.A. Silva-Espinoza, M.R. Cruz-Valenzuela, G.A. González-Aguilar, F. Nazzaro, F. Fratianni, J.F. Ayala-Zavala, Antibacterial and antioxidant properties of grape stem extract applied as disinfectant in fresh leafy vegetables. J. Food Sci. Technol. 54, 3192–3200 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Institute of Food Science, CNR-ISAAvellinoItaly

Personalised recommendations