Advertisement

Characterization of a seafood-flavoring enzymatic hydrolysate from brown alga Laminaria japonica

  • Xiaoyu Zhang
  • Di Jiang
  • Dongmei Li
  • Chenxu Yu
  • Xiufang Dong
  • Hang QiEmail author
Original Paper
  • 62 Downloads

Abstract

A seafood-flavoring enzymatic hydrolysate was prepared from brown alga Laminaria japonica. Response surface method was utilized to optimize the degree of hydrolysis and yield of the preparation process. The results indicated that the optimal conditions for the seafood flavoring production were as follows: temperature 50 °C, pH 7.5, solid–liquid ration 1:7 (g/mL), enzyme concentration 9.34%, and reaction time 21.3 h. Under this condition, the yield achieved was 29.90 ± 0.07%, and the degree of hydrolysis was 8.91 ± 0.24%. Amino acids and volatile aromatic substances of the enzymatic hydrolysate were subsequently determined by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry, respectively. Electronic tongue and electronic nose were used to assess the taste and flavor of the hydrolysate, respectively. Hexanal (43.31 ± 0.57%), (E)-2-octenal (10.42 ± 0.34%), nonanal (6.91 ± 0.65%), pentanal (6.41 ± 0.97%), heptanal (4.64 ± 0.26) and 4-ethylcyclohexanol (4.52 ± 0.21%) were the most abundant flavor compounds in the enzymatic hydrolysate with % peak areas in GC–MS. The contents of aspartic acid (11.27 ± 1.12%) and glutamic acid (13.79 ± 0.21%) were higher than other free amino acids in the enzymatic hydrolysate. Electronic tongue revealed a taste profile characterized by high scores on umami and saltiness, consistent with the HPLC results.

Keywords

Laminaria japonica Enzymatic hydrolysate Amino acids Flavor compounds Electronic tongue Electronic nose 

Notes

Acknowledgements

This work was supported financially by Public science and technology research funds projects of ocean (No. 201505030-5) and Program for Dalian High-level Innovation Talents (2016RQ063).

References

  1. 1.
  2. 2.
    D. Rodrigues et al., Food Chem. 183, 197–207 (2015)CrossRefGoogle Scholar
  3. 3.
    P.T. Chan, P. Matanjun, Food Chem. 221, 302–310 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Yang, C. Hao, R. Sun, Colloids Surf. B Biointerfaces 161, 614–619 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Prabhasankar, P. Ganesan, N. Bhaskar, Food Sci. Technol. Int. 15, 471–479 (2009)CrossRefGoogle Scholar
  6. 6.
    J.H. Kim, J.H. Kim, S.S. Yoo, Korean J. Food Cook. Sci. 24, 565–572 (2008)Google Scholar
  7. 7.
    C. Peteiro, N. Sánchez, B. Martínez, Algal Res. 15, 9–23 (2016)CrossRefGoogle Scholar
  8. 8.
    N. Laohakunjit, O. Selamassakul, O. Kerdchoechuen, Food Chem. 158, 162–170 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Kong et al., Bioresour. Technol. 99, 8873–8879 (2008)CrossRefGoogle Scholar
  10. 10.
    J.Y. Imm, C.M. Lee, J. Agric. Food Chem. 47, 2360–2366 (1999)CrossRefGoogle Scholar
  11. 11.
    C. Sonklin, N. Laohakunjit, O. Kerdchoechuen, J. Agric. Food Chem. 59, 8475–8483 (2011)CrossRefGoogle Scholar
  12. 12.
    V.M. Silva, K.J. Park, A.D. Hubinger, J. Food Sci. 75, C36–C42 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Qi et al., Int. J. Food Prop. 20, 2867–2876 (2017)CrossRefGoogle Scholar
  14. 14.
    P.M. Nielsen, D. Petersen, C.J. Dambmann, Food Sci. 66, 642–646 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Ganje et al., Heat Mass Transfer. (2018).  https://doi.org/10.1007/s00231-018-2394-3
  16. 16.
    F. Jalili et al., Food Anal. Method. 11, 598–612 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Rostami et al., Ind. Crops Prod. 58, 160–165 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Kieliszek et al., Biol. Trace Elem. Res. (2018).  https://doi.org/10.1007/s12011-018-1342-x Google Scholar
  19. 19.
    C. Murata et al., Food Chem. 135, 913–920 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Wang et al., Sensors 15, 11169–11188 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Yao et al., LWT Food Sci. Tech. 64, 528–535 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Guo et al., J. Food Qual. 37, 229–236 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Dawczynski, R. Schubert, G. Jahreis, Food Chem. 103, 891–899 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Kato, R. RhueMee, T. Nishimura, in Role of Free Amino Acids and Peptides in Food Taste. ed. by R. Teranishi, R.G. Buttery, F. Shahidi (American Chemical SocietyPress, Washington, 1989), pp. 158–174Google Scholar
  25. 25.
    I. Peinado, W. Miles, G. Koutsidis, Food Chem. 212, 612–619 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Caprino et al., Anal. Chim. Acta 617, 139–147 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Ganeko, J. Food Sci. 73, S83–S88 (2008)CrossRefGoogle Scholar
  28. 28.
    D.L. García-González et al., Meat Sci. 80, 315–325 (2008)CrossRefGoogle Scholar
  29. 29.
    G. Rajkumar et al., Drying Tech. 35, 699–708 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Phat, B. Moon, C. Lee, Food Chem. 192, 1068–1077 (2016)CrossRefGoogle Scholar
  31. 31.
    F. Donglu et al., Food Chem. 232, 1–9 (2017)CrossRefGoogle Scholar
  32. 32.
    C.J. Yang et al., J. Dairy Sci. 98, 55–67 (2015)CrossRefGoogle Scholar
  33. 33.
    B. Amalia, Sensors 10, 3882 (2010)CrossRefGoogle Scholar
  34. 34.
    H. Smyth, D. Cozzolino, Chem. Rev. 113, 1429–1440 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyu Zhang
    • 1
  • Di Jiang
    • 1
  • Dongmei Li
    • 1
  • Chenxu Yu
    • 1
    • 2
  • Xiufang Dong
    • 1
  • Hang Qi
    • 1
    Email author
  1. 1.School of Food Science and Technology, National Engineering Research Center of SeafoodDalian Polytechnic UniversityDalianPeople’s Republic of China
  2. 2.Department of Agricultural and Biosystems EngineeringIowa State UniversityAmesUSA

Personalised recommendations