Advertisement

Phytochemical composition and antioxidant properties of prickly pear (Opuntia ficus-indica L.) flowers from the Algerian germplasm

  • Hicham Berrabah
  • Khaled Taïbi
  • Leila Ait Abderrahim
  • Mohamed Boussaid
Original Paper
  • 18 Downloads

Abstract

Prickly pear Opuntia ficus-indica L. is a widely used plant in traditional medicines and as edible food product mainly in arid regions. Its phytochemical properties are primarily due to secondary metabolites present in its different parts. Quantity and quality of different metabolites and their associated biological activities are influenced by the genetic structure of medicinal plants and environmental conditions to which plants are exposed. This study aimed to assess the aqueous extract of O. ficus-indica flowers belonging to six populations from the Algerian germplasm in terms of phenolics, flavonoids, tannins, sugars and minerals contents along with the antioxidant activity revealed by the free radical scavenging activity (DPPH) and ferric reducing power assays. Results revealed that populations from high altitudes ‘Ain Defla’, ‘Msila’ and ‘Tiaret’ were characterized by their low phenolics content along with high flavonoids and sugars contents. However, populations from low altitudes showed high contents of polyphenols and condensed tannins but less sugars. In addition, all populations demonstrated a variable antioxidant activity. Variation in antioxidant properties and bioactive compounds contents among O. ficus-indica populations must be used for harnessing the maximum potential of the species and for breeding programmes at large-scale multiplication for commercial cultivation. The obtained results demonstrated the importance of Opuntia flowers as a potential source of bioactive substances for food and medicines.

Keywords

Opuntia ficus-indica L. Flower Aqueous extract Phytochemical content Antioxidant activity. 

Notes

References

  1. 1.
    S. Hosseinzadeh, A. Jafarikukhdan, A. Hosseini, R. Armand, Int. J. Clin. Med. 6, 635–642 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Boussaid, K. Taibi, L.A. Abderrahim, A. Ennajah, Arid Land Res. Manag. (2018).  https://doi.org/10.1080/15324982.2018.1424742 Google Scholar
  3. 3.
    H. Yuan, M. Qianqian, Y. Li, P. Guangchun, Molecules 21, 559 (2016).  https://doi.org/10.3390/molecules21050559 CrossRefGoogle Scholar
  4. 4.
    D. Vauzour, A. Rodriguez-Mateos, G. Corona, M.J. Oruna-Concha, J.P.E. Spencer, Nutrients 2, 1106–1131 (2010)CrossRefGoogle Scholar
  5. 5.
    L.A. Abderrahim, K. Taibi, C.A. Abderrahim, Iran. J. Sci. Technol. A (2017).  https://doi.org/10.1007/s40995-017-0411-x Google Scholar
  6. 6.
    J. Namukobea, J.M. Kasenene, B.T. Kiremirea, R. Byamukamaa, M. Kamatenesi-Mugisha, S. Krief, V. Dumontet, J.D. Kabasa, J. Ethnopharmacol. 136, 236–245 (2011)CrossRefGoogle Scholar
  7. 7.
    A.S. Anoop, M.K. Rana, S.P. Preetham, J. Food Sci. Technol. 49(5), 530–536 (2012).  https://doi.org/10.1007/s13197-011-0462-5 CrossRefGoogle Scholar
  8. 8.
    F.C. Stintzing, R. Carle, Mol. Nutr. Food Res. 49, 175–194 (2005)CrossRefGoogle Scholar
  9. 9.
    O. Osorio-Esquivel, A.O. Moreno, V.B. Alvarez, L. Dorantes Alvarez, M. Monica Giusti, Food Res. Int. 44, 2160–2168 (2011)CrossRefGoogle Scholar
  10. 10.
    M.P. Griffith, Am. J. Bot. 91, 1915–1921 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Kaur, A. Kaur, R. Sharma, J. Appl. Pharm. Sci. 2, 15–18 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Benayad, C. Martinez-Villaluenga, J. Frias, C. Gomez-Cordoves, N.E. Es-Safi, Ind. Crops Prod. 62, 412–420 (2014).  https://doi.org/10.1016/j.indcrop.2014.08.046 CrossRefGoogle Scholar
  13. 13.
    M. De Léo, M.B. De Abreu, A.M. Pawlowska, P.L. Cioni, A. Braca, Phytochem. Lett. 3, 48–52 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Alimi, N. Hfaiedh, Z. Bouoni, M. Sakly, K. BenRhouma, Environ. Toxicol. Pharmacol. 32, 406–416 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Jugran, S. Rawat, P. Dauthal, S. Mondal, I.D. Bhatt, R.S. Rawal, Ind. Crops Prod. 44, 671–676 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Bahukhandi, S. Rawat, I.D. Bhatt, R.S. Rawal, Natl Acad. Sci. Lett. 36, 93–99 (2014)CrossRefGoogle Scholar
  17. 17.
    I. Ammar, M. Ennouri, B. Khemakhem, T. Yangui, H. Attia, Ind. Crops Prod. 37, 34–40 (2012)CrossRefGoogle Scholar
  18. 18.
    I. Ammar, M. Ennouri, H. Attia, Ind. Crops Prod. 64, 97–104 (2015)CrossRefGoogle Scholar
  19. 19.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  20. 20.
    N. Acharya, P. Barai, H. Katariya, S. Acharya, D. Santani, Int. J. Pharm. Pharm. Sci. 7(8), 355–362 (2015)Google Scholar
  21. 21.
    I. Ouerghemmi, I. Bettaieb Rebey, F.Z. Rahali, S. Bourgou, L. Pistelli, R. Ksouri, B. Marzouk, M.S. Tounsi, J. Food Drug Anal. 25, 350–359 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Sadasivam, A. Manickam, in Biochemical Methods, ed. by S. Sadasivam, A. Manickam. Phenol Sulphuric Acid Method for Total Carbohydrate (New Age International (P), Ltd, New Delhi, 2005), p. 10Google Scholar
  23. 23.
    D. Cwiertny, J. Baltrusaitis, G. Hunter, A. Laskin, M. Scherer, V. Grassian, J. Geophys. Res. 113, D05202 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, D. Kumar, N. Singh, B.D. Vasisht, J. Herb. Med. Toxicol. 1(2), 17–22 (2007)Google Scholar
  25. 25.
    D. Ahmed, M. Mehboob Khan, R. Saeed, Antioxidants 4, 394–409 (2015).  https://doi.org/10.3390/antiox4020394 CrossRefGoogle Scholar
  26. 26.
    K. Taïbi, A.D. del Campo, J.M. Mulet, J. Flors, A. Aguado, New For. 45, 603–624 (2014).  https://doi.org/10.1007/s11056-014-9423-y CrossRefGoogle Scholar
  27. 27.
    A. Mata, J.P. Ferreira, C. Semedo, T. Serra, C.M. Duarte, M.R. Bronze, Food Chem. 210, 558–565 (2016)CrossRefGoogle Scholar
  28. 28.
    L.M.M. Valente, D. Paixão, A.C. do Nascimento, P.F.P. dos Santos, L.A. Scheinvar, M.R.L. Moura, L.W. Tinoco, L.N.F. Gomes, J.F.M. da Silva, Food Chem. 123, 1127–1131 (2010)CrossRefGoogle Scholar
  29. 29.
    M.S. Rabeta, R.Nur Faraniza, Int. Food Res. J. 20(4), 1691–1696 (2013)Google Scholar
  30. 30.
    D.S. Ferreira, V.V. Rosso, A.Z. Mercadante, Rev. Bras. Frutic. 32(3), 664–674 (2010).  https://doi.org/10.1590/S0100-29452010005000110 CrossRefGoogle Scholar
  31. 31.
    E.M. Yahia, C. Mondragon-Jacobo, Food Res. Int. 44(7), 2311–2318 (2011).  https://doi.org/10.1016/j.foodres.2011.02.042 CrossRefGoogle Scholar
  32. 32.
    S. Bakari, A. Daoud, S. Felhi, S. Smaoui, N. Gharsallah, A. Kadri, Food Sci. Technol. 37(2), 286–293 (2017)CrossRefGoogle Scholar
  33. 33.
    T. Guevara-Figueroa, H. Jiménez-Islas, M. Reyes-Escogido, A.G. Mortensen, B.B. Laursen, L.W. Lin, A. León-Rodríguez, I.S. Fomsgaard, A.P.B. de la Rosa. J. Food Compost. Anal. 23(6), 525–532 (2010).  https://doi.org/10.1016/j.jfca.2009.12.003 CrossRefGoogle Scholar
  34. 34.
    M.G. Astello-García, I. Cervantes, V. Nair, M. Santos-Díaz, A. Reyes-Agüero, F. Guéraud, A. Negre-Salvayre, M. Rossignol, L. Cisneros-Zevallos, A.P.B. de la Rosa. J. Food Compost. Anal. 43(1), 119–130 (2015).  https://doi.org/10.1016/j.jfca.2015.04.016 CrossRefGoogle Scholar
  35. 35.
    H. Chahdoura, J. Barreira, L. Barros, C. Santos-Buelga, I. Ferreira, L. Achour, J. Funct. Foods 9, 27–37 (2014).  https://doi.org/10.1016/j.jff.2014.04.011 CrossRefGoogle Scholar
  36. 36.
    S.D. Khomdram, P.K. Singh, Not. Sci. Biol. 3, 108–113 (2011)CrossRefGoogle Scholar
  37. 37.
    AAQ Brás, Monografia de graduação, Universidade Estadual da Paraíba (2011)Google Scholar
  38. 38.
    M.N. Bari, M. Zubair, K. Rizwan, N. Rasool, I.H. Bukhari, S. Akram, T.H. Bokhari, M. Shahid, M. Hameed, V.U. Ahmad, J. Chem. Soc. Pak. 34(4), 990–995 (2012)Google Scholar
  39. 39.
    M. Mendez, R. Rodríguez, J. Ruiz, D. Morales-Adame, F. Castillo, F.D. Hernández-Castillo, C.N. Aguilar, Ind. Crops Prod. 37(1), 445–450 (2012).  https://doi.org/10.1016/j.indcrop.2011.07.017 CrossRefGoogle Scholar
  40. 40.
    C.N. Kunyanga, V. Vellingiri, K.J. Imungi, Afr. J. Food Agric. Nutr. Dev. 14(7), 9561–9577 (2014)Google Scholar
  41. 41.
    M.E. Inal, A. Kahraman, Toxicology, 154, 21–29 (2000)CrossRefGoogle Scholar
  42. 42.
    A. Smeriglio, D. Barreca, E. Bellocco, D. Trombetta, Br. J. Pharmacol. 174(11), 1244–1262 (2017).  https://doi.org/10.1111/bph.13630 CrossRefGoogle Scholar
  43. 43.
    X.K. Zhong, X. Jin, F.Y. Lai, Q.S. Lin, J.G. Jiang, Carbohydr. Polym. 82, 722–727 (2010)CrossRefGoogle Scholar
  44. 44.
    A.M. Panico, V. Cardile, F. Garufi, C. Puglia, F. Bonina, G. Ronsisvalle, J. Ethnopharmacol. 111, 315–321 (2007)CrossRefGoogle Scholar
  45. 45.
    X.M. Li, X.L. Li, A.G. Zhou, Eur. Polym. J. 43, 488–497 (2007)CrossRefGoogle Scholar
  46. 46.
    L. Yang, K.S. Wen, X. Ruan, Y.X. Zhao, F. Wei, Q. Wang, Molecules 23, 762 (2018).  https://doi.org/10.3390/molecules23040762 CrossRefGoogle Scholar
  47. 47.
    B.L. Sampaio, R.A. Edrada-Ebel, F.B.D. Costa, Sci. Rep. 6, 29265 (2016).  https://doi.org/10.1038/srep29265 CrossRefGoogle Scholar
  48. 48.
    S.B. Zhang, Z.K. Zhou, H. Hu, K. Xu, N. Yan, S.Y. Li, For. Ecol. Manag. 212, 291–301 (2005)CrossRefGoogle Scholar
  49. 49.
    F.J. Berli, R. Alonso, J. Beltrano, R. Bottini, Am. J. Enol. Vitic. 66, 65–72 (2015)CrossRefGoogle Scholar
  50. 50.
    N.N. Liang, B.Q. Zhu, S. Han, J.H. Wang, Q.H. Pan, M.J. Reeves, C.Q. Duan, Food Res. Int. 64, 264–274 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Life and Natural SciencesIbn Khaldoun UniversityTiaretAlgeria

Personalised recommendations