Advertisement

Protective polysaccharide extracts from sporophyll of Undaria pinnatifida to improve cookie quality

  • Hao Sun
  • Dongmei Li
  • Di Jiang
  • Xiufang Dong
  • Chenxu Yu
  • Hang QiEmail author
Original Paper
  • 11 Downloads

Abstract

This study aimed to utilize polysaccharide extracts from the sporophyll of Undaria pinnatifida (PESUP) and it processing by-products (PESUPPB) to improve cookies properties. PESUP and PESUPPB were prepared and used as food additives for cookie making. Sensory attributes, textural characteristics and color of the cookies were evaluated. Results indicated that quality of cookies with 0.5% PESUP or PESUPPB possessed relatively good textural properties compared with controls. During subsequent storage of the cookies, the lipid oxidization status of the cookies was monitored through assessments of antioxidant activities, TBARS value, fatty acids composition and free radicals. After 4 weeks of storage, the antioxidant activities and fatty acids content in additive-enriched cookies (PESUP IC50 0.64 ± 0.02 g/mL, PESUPPB IC50 0.97 ± 0.02 g/mL) were higher than that of the control (IC50 1.71 ± 0.05 g/mL), while the malondialdehyde (MDA) and the free radicals were significantly decreased in the additive-enriched cookies (7.40 ± 0.21 mg/kg, con. vs. 6.47 ± 0.11 mg/kg, PESUP, 6.96 ± 0.14 mg/kg PESUPPB). This result suggested that the addition of PESUP and PESUPPB could increase the antioxidant activities of cookies, and delay lipid oxidation, which would effectively extend shelf-life of the cookies. PESUP and PESUPPB are expected to be good natural antioxidants and functional enhancers in cookies.

Keywords

Polysaccharide extracts Processing by-products Antioxidant activity Electronic spin resonance Lipid oxidation Free radicals 

Abbreviations

PESUP

Polysaccharide extracts from the sporophyll of Undaria pinnatifida (PESUP)

PESUPPB

Polysaccharide extracts from the sporophyll of Undaria pinnatifida processing by-products

SUP

Sporophyll of Undaria pinnatifida

TBARS

Thiobarbituric acid reactive substances

MDA

Malondialdehyde

ESR

Electronic spin resonance

TEAC

Trolox equivalents antioxidant capacity

TPTZ

2,4,6-tris (1-pyridyl)-5-triazine

ABTS

2,2′-azino-bis (3-ethylbenzo thiazoline-6-sulphonic acid)

DPPH

2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl

POBN

N-tert-Butyl-α-(4-pyridyl) nitrone N′-Oxide

Notes

Acknowledgements

This work was supported financially by Public science and technology research funds projects of ocean (No. 201505030-5) and Program for Dalian High-level Innovation Talents (2016RQ063).

References

  1. 1.
    C. Cui, J. Lu, D. Sun-Waterhouse et al., LWT - Food Sci. Technol. 73, 602–608 (2016)CrossRefGoogle Scholar
  2. 2.
    Department of Fisheries, Ministry of Agriculture. China Fisheries Yearbook. China Agriculture Press (2017)Google Scholar
  3. 3.
    A. Synytsya, W. Kim, S. Kim et al., Carbohydr. Polym. 81, 41–48 (2010)CrossRefGoogle Scholar
  4. 4.
    M.N. Gil, A.I. Torres, M.G. Commendatore et al., Arch. Environ. Contam. Toxicol. 68, 553–565 (2015)CrossRefGoogle Scholar
  5. 5.
    O.V. Tabakaeva, A.V. Tabakaev, Chem. Nat. Compd. 53, 1–6 (2017)CrossRefGoogle Scholar
  6. 6.
    B.M. Kim, J.H. Park, D.S. Kim et al., J. Food Sci. 81, 1840–1845 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Eda, T. Kuda, M. Kataoka et al., J. Appl. Phycol. 28, 3617–3624 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Tong, C. Zhang, D.O. Ko et al., Lett. Appl. Microbiol. 21, 460–467 (2014)Google Scholar
  9. 9.
    R. Agreán, P. Munekata, R. Domínguez et al., Food Res. Int. 99, 986–994 (2017)CrossRefGoogle Scholar
  10. 10.
    A.C. Díaz, M.L. Espino, N.S. Arzoz et al., Lat. Am. J. Aquat. Res. 45, 104–112 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Takeungwongtrakul, S. Benjakul, J. Food Sci. Technol. 54, 1126–1136 (2017)CrossRefGoogle Scholar
  12. 12.
    C.P. Passos, K. Kukurová, E. Basil et al., Food Chem. 231, 114–121 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Kozłowska, A. Żbikowska, E. Gruczyńska et al., J. Therm. Anal. Calorim. 118, 1697–1705 (2014)CrossRefGoogle Scholar
  14. 14.
    L.D.L.D.O. Pineli, M.V.D. Carvalho, L.A.D. Aguiar et al., LWT - Food Sci. Technol. 60, 50–55 (2015)CrossRefGoogle Scholar
  15. 15.
    K.B. Arun, F. Persia, P.S. Aswathy et al., J. Food Sci. Technol. 52, 6355 (2015)CrossRefGoogle Scholar
  16. 16.
    C.E. Stauffer, Functional additives for bakery foods. (1990)Google Scholar
  17. 17.
    ŠV. Tumbas, G. Ćetković, J. Čanadanović-Brunet et al., Food Chem. 207, 27–33 (2016)CrossRefGoogle Scholar
  18. 18.
    S.U. Kadam, B.K. Tiwari, C.P. O’Donnell, J. Agric. Food Chem. 61, 4667–4675 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Delgado-Andrade, I. Seiquer, M.P. Navarro et al., Mol. Nutr. Food Res. 51, 341–351 (2007)CrossRefGoogle Scholar
  20. 20.
    G. Giuberti, G. Rocchetti, S. Sigolo et al., Food Chem. 239, 679–687 (2017)CrossRefGoogle Scholar
  21. 21.
    I.F. Benzie, J.J. Strain, Methods Enzymol. 299, 15–27 (1999)CrossRefGoogle Scholar
  22. 22.
    A. Brandolini, P. Castoldi, L. Plizzari et al., J. Cereal. Sci. 58, 123–131 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Re, N. Pellegrini, A. Proteggente et al., Free Radical Biol. Med. 26, 1231–1237 (1999)CrossRefGoogle Scholar
  24. 24.
    L. John, D. Cornforth, C.E. Carpenter et al., Meat Sci. 69, 441–449 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Zawada, M. Kozłowska, A. Żbikowska, Nukleonika 60, 469–473 (2015)CrossRefGoogle Scholar
  26. 26.
    L.E. Rioux, S.L. Turgeon, M. Beaulieu, Carbohydr. Polym. 69, 530–537 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Pasqualone, A.M. Bianco, V.M. Paradiso et al., Food Res. Int. 65, 385–393 (2014)CrossRefGoogle Scholar
  28. 28.
    C. Calvo, A. Salvador, S.M. Fiszman, Eur. Food Res. Technol. 213, 99–103 (2001)CrossRefGoogle Scholar
  29. 29.
    S.S. Sumru, Chemical reactions in the processing of soft wheat products, in Food engineering aspects of baking sweet goods, ed. by S.S. Sumuru (Taylor and Francis Group, London, 2008), pp. 49–80Google Scholar
  30. 30.
    P. Sharma, H.S. Gujral, LWT - Food Sci. Technol. 55, 301–307 (2014)CrossRefGoogle Scholar
  31. 31.
    C.F. Su, F.M. Yusoff, M. Ismail et al., J. Biotechnol. 241, 175–183 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Wang, W. Zhou, M. Isabelle, Food Res. Int. 40, 470–479 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Chevallier, P. Colonna, A. Buléon et al., J. Agric. Food Chem. 48, 1322–1326 (2000)CrossRefGoogle Scholar
  34. 34.
    S. Umesha, R.S. Manohar, A. Indiramma et al., LWT - Food Sci. Technol. 62, 654–661 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Kawai, M. Toh, Y. Hagura, Food Chem. 145, 772–776 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Mamat, P. Matanjun, S. Ibrahim et al., J. Appl. Phycol. 26, 1057–1062 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Gélinas, C.M. McKinnon, Int. J. Food Sci. Technol. 41, 329–332 (2006)CrossRefGoogle Scholar
  38. 38.
    M. Hao, T. Beta, Food Chem. 133, 1320–1325 (2012)CrossRefGoogle Scholar
  39. 39.
    D. Dziki, R. Różyło, U. Gawlik-Dziki et al., Trends Food Sci. Technol. 40, 48–61 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Wang, Q. Zhang, Z. Zhang et al., Int. J. Biol. Macromol. 46, 6–12 (2010)CrossRefGoogle Scholar
  41. 41.
    E. Sinurat, E. Marraskuranto, Bull. Mar. Fish. Pos. Biotechnol, 7 (2013)Google Scholar
  42. 42.
    J.I. Choi, H.J. Kim, J.W. Lee, Food Chem. 129, 520–523 (2011)CrossRefGoogle Scholar
  43. 43.
    C.M.P.G. Dore, M.G.D.C. Faustino Alves, L.S.E. Pofírio, Will et al., Carbohydr. Polym. 91, 467–475 (2013)CrossRefGoogle Scholar
  44. 44.
    L.S. Costa, G.P. Fidelis, C.B.S. Telles et al., Mar. Dru. 9, 952–966Google Scholar
  45. 45.
    T. Barahona, N.P. Chandía, M.V. Encinas et al., Food Hydrocolloid. 25, 529–535 (2011)CrossRefGoogle Scholar
  46. 46.
    K.H. Sabeena Farvin, C. Jacobsen, Food Chem. 138, 1670–1681 (2013)CrossRefGoogle Scholar
  47. 47.
    A.A. Hassan, N.M. Rasmy, M.I. Foda et al., World J. Dairy Food. Sci 7, 01–20 (2012)Google Scholar
  48. 48.
    M.L. Sudha, V. Baskaran, K. Leelavathi, Food Chem. 104, 686–692 (2007)CrossRefGoogle Scholar
  49. 49.
    D. Vitali, I.V. Dragojevic´, B. Šebečic´, Food Chem. 114, 1462–1469 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Kolakowska, Lipid oxidation in food systems, in Chemical and Functional Properties of Food Lipids, ed. by Z.E. Sikorski, A. Kolakowska (CRC Press, Boca Raton, 2003), pp. 133–160Google Scholar
  51. 51.
    F. Darughe, M. Barzegar, M.A. Sahari, Int. Food. Res. J. 19, 1253–1260 (2012)Google Scholar
  52. 52.
    M. Bialek, J. Rutkowska, A. Bialek et al., Pol. J. Food. Nutri. Sci. 66, 77–84 (2016)Google Scholar
  53. 53.
    I. Izzreen, A. Noriham, Int. Food. Res. J. 18, 583–587 (2011)Google Scholar
  54. 54.
    O. Roman, M.N. Maillard, C. Plessis et al., Lipid Technol. 22, 87–90 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hao Sun
    • 1
  • Dongmei Li
    • 1
  • Di Jiang
    • 1
  • Xiufang Dong
    • 1
  • Chenxu Yu
    • 1
    • 2
  • Hang Qi
    • 1
    Email author
  1. 1.School of Food Science and Technology, National Engineering Research Center of SeafoodDalian Polytechnic UniversityDalianPeople’s Republic of China
  2. 2.Department of Agricultural and Biosystems EngineeringIowa State UniversityAmesUSA

Personalised recommendations