Effect of multi-frequency multi-mode ultrasound washing treatments on physicochemical, antioxidant potential and microbial quality of tomato

  • Evans Adingba Alenyorege
  • Haile MaEmail author
  • Ishmael Ayim
  • Joshua Harrington Aheto
  • Chen Hong
  • Cunshan Zhou
Original Paper


The study investigated the effect of multi-frequency ultrasound treatments including mono-frequency ultrasound (MFU), dual-frequency ultrasound (DFU), and tri-frequency ultrasound (TFU) on the physicochemical, antioxidant potential and microbial quality of tomatoes. The results revealed that various frequencies and modes presented significant (P < 0.05) differences in measured parameters including total soluble solids, colour, texture, lycopene content, total phenolic content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, microstructure, pigment reflectance and microbial inactivation. However, ultrasound treatments did not significantly affect the pH and titratable acidity of the tomato. The TFU treatment led to a higher retention of total soluble solids, tomato colour indices, total phenolic content and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of the sample, with a significant reduction in natural microbiota. The best treatment for natural microbiota reduction and enhancement of microbial safety was TFU, which in general reduced in decimal terms > 1.5 log CFU/g of bacteria, yeast and molds. In general, lycopene content, total colour difference, pigment reflectance, texture, microstructural integrity, and microbial load of tomato decreased in the order of MFU > DFU > TFU due to the increasing cavitation and possible additive effect of multi-frequency ultrasound. Results of the investigation recommend that multi-frequency multi-mode ultrasound washing could retain the quality of tomato. It could effectively be employed for postharvest processing of tomato leading to improvement in physicochemical, antioxidant potential and microbial safety.


Multi-frequency ultrasound Physicochemical Microbial safety Antioxidants Tomato 



This study was supported by the National Key Research and Development Programme [2018YFD0700101] and Jiangsu Provincial Special Fund for the Transformation of Scientific and Technological Achievements [BA2016169].


  1. 1.
    M. Mechmeche, H. Ksontini, M. Hamdi, F. Kachouri, Impact of the addition of tomato seed oil on physicochemical characteristics, antioxidant activity and microbiological quality of dried tomato slices. J. Food Meas. Charact. 12, 1378–1390 (2018)CrossRefGoogle Scholar
  2. 2.
    E. Coyago-Cruz, M. Corell, A. Moriana, D. Hernanz, A.M. Benítez-González, C.M. Stinco, A.J. Meléndez-Martínez, Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem. 240, 870–884 (2018)CrossRefGoogle Scholar
  3. 3.
    R. Kongkachuichai, R. Charoensiri, K. Yakoh, A. Kringkasemsee, Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chem. 173, 838–846 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Tilahun, D.S. Park, A.M. Taye, C.S. Jeong, Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Sci. Biotechnol. 26, 473–479 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Gani, W.N. Baba, M. Ahmad, U. Shah, A.A. Khan, I.A. Wani, F.A. Masoodi, A. Gani, Effect of ultrasound treatment on physicochemical, nutraceutical and microbial quality of strawberry. LWT Food Sci. Technol. 66, 496–502 (2016)CrossRefGoogle Scholar
  6. 6.
    T.S. Awad, H.A. Moharram, O.E. Shaltout, D. Asker, M.M. Youssef, Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res. Int. 48, 410–427 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Piyasena, E. Mohareb, R.C. Mckellar, Inactivation of microbes using ultrasound: a review. Int. J. Food Microbiol. 87, 207–216 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Golmohamadi, G. Möller, J. Powers, C. Nindo, Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason. Sonochem. 20, 1316–1323 (2013)CrossRefGoogle Scholar
  9. 9.
    J.F.B. Sao Jose, N. Andrade, A. Ramos, M.C. Vanetti, P. Stringheta, J.B. Chaves, Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 45, 36–50 (2014)CrossRefGoogle Scholar
  10. 10.
    E.A. Alenyorege, H. Ma, I. Ayim, C. Zhou, Ultrasound decontamination of pesticides and microorganisms in fruits and vegetables: a review. J. Food Saf. Food Qual. 69, 80–91 (2018)Google Scholar
  11. 11.
    M. Abid, S. Jabbar, T. Wu, M. Muhammad, B. Hu, S. Lei, X. Zeng, Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem. 21, 93–97 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Tomadoni, L. Cassani, G. Viacava, M.D.R. Moreira, A. Ponce, Effect of ultrasound and storage time on quality attributes of strawberry juice. J. Food Process. Eng. 40, 1–8 (2017)Google Scholar
  13. 13.
    S. Muzaffar, M. Ahmad, S.M.W. Adil, Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). J. Food Sci. Technol. 53, 2752–2759 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Abid, S. Jabbar, T. Wu, M. Muhammad, B. Hu, S. Lei, X. Zhang, X. Zeng, Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 20, 1182–1187 (2013)CrossRefGoogle Scholar
  15. 15.
    A.O. Adekunte, B.K. Tiwari, P.J. Cullen, A.G.M. Scannell, C.P.O. Donnell, Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 122, 500–507 (2010)CrossRefGoogle Scholar
  16. 16.
    K. Huang, S. Wrenn, R. Tikekar, N. Nitin, Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. J. Food Eng. 224, 95–104 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Nowacka, M. Wedzik, Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust. 103, 163–171 (2016)CrossRefGoogle Scholar
  18. 18.
    X. Ren, H. Ma, S. Mao, H. Zhou, Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. Eur. Food Res. Technol. 238, 435–442 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Yang, Y. Li, S. Li, A.O. Oladejo, Y. Wang, S. Huang, C. Zhou, Y. Wang, L. Mao, Y. Zhang, H. Ma, X. Ye, Effects of low power density multi-frequency ultrasound pretreatment on the enzymolysis and the structure characterization of defatted wheat germ protein. Ultrason. Sonochem. 38, 410–420 (2017)CrossRefGoogle Scholar
  20. 20.
    A.A. Gabriel, Inactivation behaviours of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice. Food Control 46, 189–196 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Yang, Y. Li, S. Li, A.O. Oladejo, S. Ruan, Y. Wang, S. Huang, H. Ma, Effects of ultrasound pretreatment with different frequencies and working modes on the enzymolysis and the structure characterization of rice protein. Ultrason. Sonochem. 38, 19–28 (2017)CrossRefGoogle Scholar
  22. 22.
    E.A. Alenyorege, H. Ma, I. Ayim, C. Zhou, P. Wu, C. Hong, R. Osae, Effect of multi-frequency ultrasound surface washing treatments on Escherichia coli inactivation and some quality characteristics of non-heading Chinese cabbage. J. Food Process. Preserv. 42, 1–11 (2018)CrossRefGoogle Scholar
  23. 23.
    E.E. Abano, H. Ma, W. Qu, Optimization of drying conditions for quality dried tomato slices using response surface methodology. J. Food Process. Preserv. 38, 996–1009 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Agius, S. von Tucher, B. Poppenberger, W. Rozhon, Quantification of sugars and organic acids in tomato fruits. MethodsX. 5, 537–550 (2018)CrossRefGoogle Scholar
  25. 25.
    T. Suwanaruang, Analyzing lycopene content in fruits. Agric. Agric. Sci. Procedia. 11, 46–48 (2016)Google Scholar
  26. 26.
    G.O. Adejo, F.A. Agbali, O.S. Otokpa, T. Antioxidant, Lycopene, Ascorbic acid and microbial load estimation in powdered tomato varieties sold in dutsin-ma market. Open Access Libr. J. 2, 1–7 (2015)Google Scholar
  27. 27.
    Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22, 296–302 (2014)CrossRefGoogle Scholar
  28. 28.
    Q. Shen, B. Zhang, R. Xu, Y. Wang, X. Ding, P. Li, Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis. Anaerobe 16, 380–386 (2010)CrossRefGoogle Scholar
  29. 29.
    L.O. Silveira, D.K. Rosario, A.C. Giori, S.B. Oliveira, Y. Mutz, C. Marques, J. Coelho, P. Bernardes, Combination of peracetic acid and ultrasound reduces Salmonella Typhimurium on fresh lettuce (Lactuca sativa L. var. crispa). J. Food Sci. Technol. 55(4), 1535–1540 (2018)CrossRefGoogle Scholar
  30. 30.
    D. Bermúdez-Aguirre, G.V. Barbosa-Cánovas, Disinfection of selected vegetables under nonthermal treatments: chlorine, acid citric, ultraviolet light and ozone. Food Control 29, 82–90 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Xiong, D.W. Sun, H. Pu, A. Xie, Z. Han, M. Luo, Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chem. 179, 175–181 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Qi, Q. Huang, Y. Hung, Effectiveness of electrolyzed oxidizing water treatment in removing pesticide residues and its effect on produce quality. Food Chem. (2017). Google Scholar
  33. 33.
    L. Wang, B. Xu, B. Wei, R. Zeng, Low-frequency ultrasound pretreatment of carrot slices: EFFECT on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason. Sonochem. 40, 619–628 (2018)CrossRefGoogle Scholar
  34. 34.
    R. Bhat, N.S.B.C. Kamaruddin, L. Min-Tze, A.A. Karim, Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 18, 1295–1300 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Moghimi, V. Farzaneh, The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella sativa). Nutrire 43(1), 18 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Anese, G. Mirolo, P. Beraldo, G. Lippe, Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem. 136, 458–463 (2013)CrossRefGoogle Scholar
  37. 37.
    K.D.P.P. Gunathilake, K.K.D.S. Ranaweera, Antioxidative properties of 34 green leafy. J. Funct. Foods. 26, 176–186 (2016)CrossRefGoogle Scholar
  38. 38.
    P.B. Pathare, U.L. Opara, F.A. Al-said, Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol. (2012). Google Scholar
  39. 39.
    J.F.B. Sao Jose, M.C. Vanetti, Application of ultrasound and chemical sanitizers to watercress, parsley and strawberry: microbiological and physicochemical quality. LWT Food Sci. Technol. 63, 946–952 (2015)CrossRefGoogle Scholar
  40. 40.
    A.O. Oladejo, H. Ma, W. Qu, C. Zhou, B. Wu, X. Yang, Influence of ultrasound pretreatments on diffusion coefficients, texture and colour of osmodehydrated sweet potato (Ipomea batatas). Int. J. Food Sci. Technol. 51(4), 1–9 (2017)Google Scholar
  41. 41.
    A.L.A. Duarte, D.K.A. do Rosário, S.B.S. Oliveira, H.L.S. de Souza, R.V. de Carvalho, J.C.S. Carneiro, P.I. Silva, P.C. Bernardes, Ultrasound improves antimicrobial effect of sodium dichloroisocyanurate to reduce Salmonella Typhimurium on purple cabbage. Int. J. Food Microbiol. 269, 12–18 (2018)CrossRefGoogle Scholar
  42. 42.
    J. Tripathi, S. Chatterjee, J. Vaishnav, P.S. Variyar, A. Sharma, Gamma irradiation increases storability and shelf life of minimally processed ready-to-cook (RTC) ash gourd (Benincasa hispida) cubes. Postharvest Biol. Technol. 76, 17–25 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Evans Adingba Alenyorege
    • 1
    • 2
  • Haile Ma
    • 1
    • 3
    Email author
  • Ishmael Ayim
    • 1
    • 4
  • Joshua Harrington Aheto
    • 1
  • Chen Hong
    • 1
  • Cunshan Zhou
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Faculty of AgricultureUniversity for Development StudiesTamaleGhana
  3. 3.Technology Integration Base for Vegetable Dehydration Processing, Ministry of AgricultureJiangsu UniversityZhenjiangPeople’s Republic of China
  4. 4.Faculty of Applied ScienceKumasi Technical UniversityKumasiGhana

Personalised recommendations