Optimization of polyphenols extraction from orange peel

  • S. Haya
  • F. Bentahar
  • M. Trari
Original Paper


The aim of the present study was to optimize the phenolic recovery from orange peel by investigating the effect of several parameters on the extraction yield. The phenols were extracted in a batch reactor and the effects of the concentration and the nature of the solvent (methanol, ethanol and hexane: 0–100% V/V), were studied. The Folin–Ciocalteau reagent (FCR) was used for the determination of the total phenolic content (TPC) and the antioxidant activity was investigated using the stable free radical: 2,2-diphenyl-1-picrylhydrazyl (DPPH). TPC corresponds to the gallic acid equivalent (GAE)/g dry weight (DW) and its value (115.52 mg) was obtained at 25 °C with a stirring speed of 400 rpm in neutral medium (pH ~ 6) and a particle size of 605 µm. The results indicated that the polyphenols content varies considerably with the solvent polarity and the highest extraction yield was obtained with aqueous organic solvent. The inhibitory concentration (IC50) obtained for DPPH inhibition was found to be 0.5%, while the DPPH inhibition showed a noticeable inhibitory activity of orange peel with a percentage of 97%; such high value constitutes an originality of the present study.


Orange peel Inhibitory concentration (IC50Total phenol content (TPC) 2,2-Diphenyl-1-picrylhydrazyl (DPPH) 


  1. 1.
    I. Klimczak, M. Maecka, M. Szlachta, A. Gliszczyn, S. Swigo, J. Food Compos. Anal. 20, 313–322 (2007)CrossRefGoogle Scholar
  2. 2.
    A.L.K. Faller, E. Fialho, Food Res. Int. 42, 210–215 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Gomes, M. Catalano, Riv Ital Sostanze Gr. 56, 361–365 (1979)Google Scholar
  4. 4.
    C.H. Kaur, H.C. Kapoor, Int. J. Food Sci. Tech. 36, 703–725 (2001)CrossRefGoogle Scholar
  5. 5.
    M.A. Ebrahimzdeh, S.F. Nabavi, S.M. Nabavi, M. Mahmoudi, B. Eslami, A.A. Dehpour, Afr. J. Biotechnol. 9(34), 5542–5549 (2010)Google Scholar
  6. 6.
    A. Moure, J.M. Cruz, D. Franco, J.M. Dominguez, J. Sineiro, M.J. Nunez, J.C. Parajo, Food Chem. 72, 145–171 (2001)CrossRefGoogle Scholar
  7. 7.
    B.M. Ames, Science 221, 1256–1264 (1983)CrossRefGoogle Scholar
  8. 8.
    P.P. Singh, D.A. Marleny, A. Saldaña, Food Res. Int. 44, 2452–2458 (2011)CrossRefGoogle Scholar
  9. 9.
    N. M’hiria, I. Ioannoub, M. Boudreau, M. Ghoulba, Food Bioprod. Process 96, 161–170 (2015)CrossRefGoogle Scholar
  10. 10.
    S.S. Hosseini, F. Khodaiyan, M.S. Yarmand, Carbohyd. Polym. 140, 59–65 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Scherer, H.T. Godoy, Rev Bras Plantas Med. 16, 41–46(2014)CrossRefGoogle Scholar
  12. 12.
    M. Dehkharghanian, M.A. Vijayalakshmi, Food Chem. 121, 863–870 (2004)CrossRefGoogle Scholar
  13. 13.
    J.T. Batalon, P.S. Madamba, J. Agric. Eng. Res. 78, 167–175 (2001)CrossRefGoogle Scholar
  14. 14.
    P. Bhunia, M.M. Ghangrekar, Bioresour. Technol 99, 4229–4238 (2008)CrossRefGoogle Scholar
  15. 15.
    V. Bondet, W. Brand-Williams, C. Berset, Lebensm Wiss. U-Technol. 30, 609–615 (1997)CrossRefGoogle Scholar
  16. 16.
    M.A. Madrau, A. Piscopo, A.M. Sanguinetti, A. Del Caro, M. Poiana. V.R. Flora, V. Romeo, Eur. Food Res. Technol. 228, 441–448 (2009)CrossRefGoogle Scholar
  17. 17.
    T. Wu, J. Yan, R. Liu, M.F. Marcone, H.A. Aisa, R. Tsao, Food Chem. 133(4), 1292–1298 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Theurich, M. Lindner, D.W. Bahnemann, Langmuir 12(26), 6368–6376 (1996)CrossRefGoogle Scholar
  19. 19.
    A. Khalfaoui, Ph.D Thesis (Algiers) (2012)Google Scholar
  20. 20.
    E. Guyon, J.P. Hulin, Sciences 249, 70–77 (1998)Google Scholar
  21. 21.
    I. Ghodbane, L. Nouri, O. Hamdaoui, M. Chiha, J. Hazard. Mater. 152, 148–158 (2008)CrossRefGoogle Scholar
  22. 22.
    E.K. Guechi, O. Hamdaoui, Arab. J. Chem. 9, 416–424 (2011)CrossRefGoogle Scholar
  23. 23.
    M.K. Khan, M. Abert-Vian, A.S. Fabiano-Tixier, O. Dangles, Food Chem. 119, 851–858 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Shukla, Y.H. Zhang, P. Dubey, J.L. Margrave, S.S. Shukla, J. Hazard. Mater. 95, 137–152 (2002)CrossRefGoogle Scholar
  25. 25.
    O. Ahmet, O. Mahmut, S. Ayhan, Biochem. Eng. J. 37, 192–200 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Koffi, Y. Sea, M. Dodehe, S. Soro, J. Anim. Plant Sci. 5, 550–558 (2010)Google Scholar
  27. 27.
    H. Shiba, K. Kondo, R. Katsuyama, Alkyl Gallates, Antimicrob. Agents CH. 49, 549–555 (2005)CrossRefGoogle Scholar
  28. 28.
    J. Gangoue-Pieboji, D.E. Pegnyemb, D. Niyitegeka, Ann. Trop. Med. Parasitol. 100, 237–243 (2006)CrossRefGoogle Scholar
  29. 29.
    A.A.A. Mohdaly, M.A. Sarhan, A. Mahmoud, A. Ramadan, I. Smetanska, J. Sci. Food. Agric. 90, 218–226 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Turkmen, Y.S. Velioglu, F. Sari, G. Polat, Molecules. 12, 484–496 (2007)CrossRefGoogle Scholar
  31. 31.
    C. Poncet-Legrand, D. Cartalade, J.L. Putaux, V. Cheynier, A. Vernhet, Langmuir 19(25), 10563–10572 (2003)CrossRefGoogle Scholar
  32. 32.
    C. Hseu, W.H. Chang, C.S. Chen, Food Chem. Toxicol. 46, 105–114 (2008)CrossRefGoogle Scholar
  33. 33.
    S.C. Liu, J.T. Lin, C.K. Wang, H.Y. Chen, D.J. Yang, Food Chem. 114, 577–581 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire “Phenomenes de Transfert”, Faculté de Génie Mécanique et Génie des ProcédésUSTHBAlgiersAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria

Personalised recommendations