Storage stability of bleached rice bran wax organogels and water-in-oil emulsions

  • Sawanya Pandolsook
  • Sasikan KupongsakEmail author
Original Paper


In this study, the effects of storage time (90 days) at refrigerated (4 ± 2 °C) and room (30 ± 2 °C) temperatures on the quality of bleached rice bran wax organogels (BRXO) and water-in-oil (W/O) emulsions prepared using organogels (EO) were determined. BRXO was produced by mixing rice bran oil (RO) with bleached rice bran wax (BRX, 9% wax). EO (20% aqueous phase, 80% oil phase) was prepared with BRXO without adding an emulsifier. All quality attributes changed during storage at both temperatures. The colors of BRXO and EO were slightly changed, while those of RO and the emulsion without the addition of organogels (E) were notably changed. EO showed better stability than E. In assessing the various stages of oxidative stability, the peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were determined. The PV peaked at 30 days (E and EO) and 90 days (RO and BRXO) and later declined. TBARS values decreased with a decrease in the storage temperature and time. There were no significant changes in the firmness, hardness or stickiness of BRXO and EO at 30 °C during storage (p < 0.05). The polymorphisms of RO appeared to be small, dispersed, plate-like crystals. The BRXO crystal morphology was needle-like and fibrous. All stored samples at both temperatures showed similar morphologies. Regarding EO, the water droplets were dispersed and trapped in the crystal network. Based on the quality parameter results, the bleached rice bran wax can produce stable structured BRXO and W/O emulsions.


Organogels Bleached rice bran wax Water-in-oil emulsion Storage stability Oxidative stability 



This work was supported by the 90th Anniversary of Chulalongkorn University fund (Ratchadaphiseksomphot Endowment Fund), 2017, and the overseas academic presentation scholarship for graduate students, Graduate School, Chulalongkorn University, and the raw material was provided by Thai Edible Oil Co., Ltd., Thailand.


  1. 1.
    S. Banupriya, A. Elango, N. Karthikeyan, C. Kathirvelan, Int. J. Sci. Environ. Technol. 5(2), 1545–1548 (2016)Google Scholar
  2. 2.
    L. Hu, Y. Zhang, O. RamstrÓ§m, Sci. Rep. 5, 11065 (2015)CrossRefGoogle Scholar
  3. 3.
    H.S. Hwang, M. Singh, E.L. Bakota, J.K.W. Moser, S. Kim, S.X. Liu, J. Am. Oil Chem. Soc. 90, 1705–1712 (2013)CrossRefGoogle Scholar
  4. 4.
    E. Yılmaz, M. Öğütcü, J. Food Sci. 79, E1732–E1738 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Öğütcü, E. Yılmaz, Int. J. Food Prop. 18, 1741–1755 (2015)CrossRefGoogle Scholar
  6. 6.
    A.R. Patel, P.S. Rajarethinem, A. Grędowska, O. Turhan, A. Lesaffer, W.H.D. Vos, D.V.d. Walle, K. Dewettinck, Food Funct. 5, 645–652 (2014)CrossRefGoogle Scholar
  7. 7.
    F.R. Lupi, D. Gabriele, L. Seta, N. Baldino, B. Cindio, Eur. J. Lipid Sci. Technol. 116, 1734–1744 (2014)CrossRefGoogle Scholar
  8. 8.
    M.A. Rogers, A.J. Wright, A.G. Marangoni, Edible Organogels Structure and Health Implications, ed. by A.G. Marangoni, N. Garti (Academic Press and AOCS Press, New York, 2011), pp. 221–234Google Scholar
  9. 9.
    N.E. Hughes, A.G. Marangoni, A.J. Wright, M.A. Rogers, J.W.E. Rush, Trends Food Sci. Technol. 20, 470–480 (2009)CrossRefGoogle Scholar
  10. 10.
    J.F. Toro-Vázquez, R. Mauricio-Pérez, M.M. onzález-Chávez, M. Sánchez-Becerril, J.J. Ornelas-Paz, J.D. Pérez-Martínez, Food Res. Int. 54, 1360–1368 (2013)CrossRefGoogle Scholar
  11. 11.
    S.M. Hodge, D. Rousseau, Food Res. Int. 36, 695–702 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Pandolsook, S. Kupongsak, J. Food Eng. 214, 182–192 (2017)CrossRefGoogle Scholar
  13. 13.
    U. Wolfmeier, H. Schmidt, F.L. Heinrichs, G. Michalczyk, W. Payer, W. Dietsche, K. Boehlke, G. Hohner, J. Wildgruber, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2002), pp. 1–63Google Scholar
  14. 14.
    J.F. Toro-Vázquez, J.A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, M. Alonzo Macias, M.M. González-Chávez, J. Am. Oil Chem. Soc. 84, 989–1000 (2007)CrossRefGoogle Scholar
  15. 15.
    L.S.K. Dassanayake, D.R. Kodali, S. Ueno, K. Sato, J. Am. Oil Chem. Soc. 86, 1163–1173 (2009)CrossRefGoogle Scholar
  16. 16.
    J.A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, J.F. Toro-Vazquez, J. Am. Oil Chem. Soc. 86, 765–772 (2009)CrossRefGoogle Scholar
  17. 17.
    J.A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, R.G. Weiss, J.F. Toro-Vazquez, Eur. J. Lipid Sci. Technol. 111, 207–215 (2009)CrossRefGoogle Scholar
  18. 18.
    C.D. Doan, D. Van de Walle, K. Dewettinck, A.R. Patel, J. Am. Oil Chem. Soc. 92, 801–811 (2015)CrossRefGoogle Scholar
  19. 19.
    U.S. Food and Drug Administration. (2016), Search.cfm?fr = 172.890. Accessed 15 Jan 2017
  20. 20.
    A.D. Maru, R.K. Surawase, P.V. Bodhe, Int. J. Pharm. Sci. Res. 1(4), 203–207 (2012)Google Scholar
  21. 21.
    Global Agritech Inc, US.Patent (PTC/US2008/071178) (2009)Google Scholar
  22. 22.
    A.R. Patel, D. Schatteman, W.H. De Vos, A. Lesaffer, K. Dewettinck, J. Colloid Interface Sci. 411, 114–121 (2013)CrossRefGoogle Scholar
  23. 23.
    J.F. Toro-Vázquez, M.A. Charó-Alonso, J.D. Pérez-Martínez, J.A. Morales-Rueda, in Edible Organogels: Structure and Health Implications, ed. by A.G. Marangoni, N. Garti (Academic Press and AOCS Press, New York, 2011), pp. 119–148CrossRefGoogle Scholar
  24. 24.
    H. Mirhosseini, C. Tan, A. Aghlara, N. Hamid, S. Yusof, B. Chern, Carbohydr. Polym. 73(1), 83–91 (2008)CrossRefGoogle Scholar
  25. 25.
    J.A. Buege, S.D. Aust, in Methods in Enzymology, ed. by B.S. Flesicher, L. Packer (Academic Press, New York, 1978), pp. 302–310Google Scholar
  26. 26.
    D.J. McClements, Curr. Opin. Colloid Interface Sci. 7, 451–455 (2002)CrossRefGoogle Scholar
  27. 27.
    E. Wąsowicz, A. Gramza, M. Hęś, H.H. Jeleñ, J. Korczak, M. Malecka, S. Mildner-Szkudlarz, M. Rudziñska, U. Samotyja, R. Zawirska-Wojtasiak, Pol. J. Food Nutr. Sci. 13(54), 87–100 (2004)Google Scholar
  28. 28.
    S. Kupongsak, S. Sathitvorapojjana, Pol. J. Food Nutr. Sci. 67(2), 107–115 (2017)CrossRefGoogle Scholar
  29. 29.
    J.W. Finley, P. Given, Food Chem. Toxicol. 24, 999–1006 (1986)CrossRefGoogle Scholar
  30. 30.
    M. Öğütcüa, E. Yılmaza, Y. Grasas, Aceites 65, 3, (2014)Google Scholar
  31. 31.
    P. Walstra, Food structure and Behaviour, ed. by J.M. Blanshard, P. Lillford (Academic press, Orlando, 1987), pp. 67–85Google Scholar
  32. 32.
    S. Metin, R.W. Hartel, Bailey’s Industrial Oil and Fat Products (Wiley, New York, 2005), pp. 45–76Google Scholar
  33. 33.
    A.I. Blake, E.D. Co, A.G. Marangoni, J. Am. Oil Chem. Soc. 1, 885–903 (2014)CrossRefGoogle Scholar
  34. 34.
    J.N. Coupland, Curr. Opin. Colloid Interface Sci. 7, 445–450 (2002)CrossRefGoogle Scholar
  35. 35.
    S. Ghosh, D. Rousseau, Curr. Opin. Colloid Interface Sci. 16, 421–431 (2011)CrossRefGoogle Scholar
  36. 36.
    M. Öğütcü, N. Arifoğlu, E. Yılmaz, J. Am. Oil Chem. Soc. 92, 459–471 (2015)CrossRefGoogle Scholar
  37. 37.
    J.M. deMan, L. deMan, in Crystallization and Solidification Properties of Lipids, ed. by B.N. Widlak, R. Hartel, S.S. Narine (AOCS Press, Illinois, 2001), p. 225Google Scholar
  38. 38.
    C. Himawan, V.M. Starov, A.G.F. Stapley, Adv. Colloid Interface Sci. 122, 3–33 (2006)CrossRefGoogle Scholar
  39. 39.
    P. Walstra, W. Kloek, T. van Vliet, in Crystallization Processes in Fats and Lipid Systems, ed. by B.K. Sato, N. Garti (Marcel Dekker, New York, 2001), p. 289Google Scholar
  40. 40.
    D. Aquilano, G. Sgualdino, in Crystallization Processes in Fats and Lipid Systems, ed. by B.K. Sato, N. Garti (Marcel Dekker, New York, 2001), p. 1Google Scholar
  41. 41.
    S. Sonwai, P. Kaphueakngam, A. Flood, J. Food Sci. Technol 51(10), 2357–2369 (2012)CrossRefGoogle Scholar
  42. 42.
    O.N. Ciftci, S. Fadiloglu, F. Gogus, Bioresour. Technol. 100, 324–329 (2009)CrossRefGoogle Scholar
  43. 43.
    F.Y. Ushikubo, R.L. Cunha, Food Hydrocolloids 34, 145–153 (2014)CrossRefGoogle Scholar
  44. 44.
    S.M. Hodge, D. Rousseau, J. Am. Oil Chem. Soc. 82, 159–164 (2005)CrossRefGoogle Scholar
  45. 45.
    E. Dickinson, Curr. Opin. J Colloid Interface Sci. 15, 40–49 (2010)CrossRefGoogle Scholar
  46. 46.
    B.P. Binks, A. Rocher, J. Colloid Interface Sci. 335, 94–104 (2009)CrossRefGoogle Scholar
  47. 47.
    A.K. Eldin, in Oxidation in Foods and Beverages and Antioxidan Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, ed. by E.A. Decker, R.J. Elias, D. Julian (Woodhead, Illinois, 2010)Google Scholar
  48. 48.
    H. Abramovic, V. Abram, Food Technol. Biotechol. 43(1), 63–70 (2005)Google Scholar
  49. 49.
    Codex Alimentarius Committee, in Codex Standard for Named Vegetable Oils, CX-STAN 210–1999, vol. 8 (Codex Alimentarius Committee, Geneva, 2001), pp. 11–25Google Scholar
  50. 50.
    M. Popa, I. Glevitzky, G.A. Dumitrel, M. Glevitzky, D. Popa, Sci. Papers 6, 137–140 (2017)Google Scholar
  51. 51.
    P. Pangloli, S.L. Melton, J.L. Collins, M.P. Penfield, A.M. Saxton, J. Food Sci. (2002). Google Scholar
  52. 52.
    N.A.M. Azman, M.G. Gallego, F. Segovia, S. Abdullah, S.M. Shaarani, M.P.A. Pablos, Antioxidants 5, 11 (2016)CrossRefGoogle Scholar
  53. 53.
    L.M.L. Nollet, F. Toldra, Handbook of Analysis of Edible Animal By-Products (CRC Press/Taylor & Francis, London, New York, 2011)CrossRefGoogle Scholar
  54. 54.
    T. Wang, J. Am. Oil Chem. Soc. 79(12), 1201–1206 (2002)CrossRefGoogle Scholar
  55. 55.
    F.D. Gunstone, The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses (Blackwell Publishing, London, 2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food Technology, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations