Advertisement

Brown macroalgae from the Adriatic Sea as a promising source of bioactive nutrients

  • Marijana Kosanić
  • Branislav Ranković
  • Tatjana Stanojković
Original Paper
  • 15 Downloads

Abstract

In the present investigation the acetone extracts of three brown marine macroalgae Dictyota dichotoma, Padaina pavonia and Sargassum vulgare were tested for antioxidant, antimicrobial and cytotoxic potential. The antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging and reducing power. P. pavonia extract showed more potent free radical scavenging activity (IC50 = 691.56 µg L−1) than D. dichotoma and S. vulgare extracts. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The total content of phenol and flavonoid in extracts was examined using Folin–Ciocalteu reagent and aluminium chloride method and the obtained values were expressed as pyrocatechol equivalents, and as rutin equivalents, respectively. Further, the antimicrobial potential was determined by a microdilution method. Among the tested species, the extract of D. diichotoma showed the best antimicrobial activity with minimum inhibitory concentration values ranging from 0.156 to 2.5 mg L−1. Finally, the cytotoxic activity was tested using microculture tetrazolium test on the human colon carcinoma LS174 cells, human lung carcinoma A549 cells, malignant melanoma FemX cells and chronic myelogenous leukaemia K562 cells. The extract of D. dichotoma expressed stronger cytotoxic activity toward tested cell lines with IC50 values ranging from 9.76 to 50.96 µg L−1.

Keywords

Acetone extracts Anticancer activity Antimicrobial activity Antioxidant activity Algae 

Notes

Acknowledgements

This work was financed in part by the Ministry of Science, Technology, and Development of the Republic of Serbia and was carried out within the framework of Projects No. 173032 and 175011.

Compliance with ethical standards

Conflict of interest

All contributing authors declare no conflicts of interest.

References

  1. 1.
    N. Khaled, M. Hiba, C. Asma, Antioxidant and antifungal activities of Padina pavonica and Sargassum vulgare from the Lebanese Mediterranean Coast. Adv. Environ. Biol. 1, 42–48 (2012)Google Scholar
  2. 2.
    A. Ambreen, K. Hira, A. Ruqqia, V. Sultana, Evaluation of biochemical component and antimicrobial activity of some seaweeeds occurring at Karachi coast. Pak. J. Bot. 44, 1799–1803 (2012)Google Scholar
  3. 3.
    R. Bouhlal, C. Haslin, J.C. Chermann, S. Colliec-Jouault, C. Sinquin, G. Simon, S. Cerantola, H. Riadi, N. Bourgougnon, Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta,. Ceramiales). Mar. Drugs 9, 1187–1209 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Dayong, L. Jing, G. Shuju, H. Lijun, Antithrombotic effect of bromophenol, the alga-derived thrombin inhibitor. J. Biotechnol. 136, 577–588 (2008)Google Scholar
  5. 5.
    H.J. Na, P.D. Moon, H.J. Lee, H.R. Kim, H.J. Chae, T. Shin, Y. Seo, S.H. Hong, H.M. Kim, Regulatory effect of atopic allergic reaction by Carpopeltis affinis. J. Ethnopharmacol. 101, 43–48 (2005)CrossRefGoogle Scholar
  6. 6.
    S.K. Kim, N.V. Thomas, X. Li, Anticancer compounds from marine macroalgae and their application as medicinal foods. Adv. Food Nutr. Res. 64, 213–224 (2011)CrossRefGoogle Scholar
  7. 7.
    G.K. Devi, K. Manivannan, G. Thirumaran, F.A.A. Rajathi, P. Anantharaman, In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pac. J. Trop. Med. 4, 205–211 (2011)CrossRefGoogle Scholar
  8. 8.
    C.Y. Wang, T.C. Wu, S.L. Hsieh, Y.H. Tsai, C.W. Yeh, C.Y. Huang, Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium. J. Food Drug Anal. 23, 766–777 (2015)CrossRefGoogle Scholar
  9. 9.
    O. Morton, B.E. Picton, Encyclopedia of Marine Life of Britain and Ireland (National Museums Northern Ireland, Holywood, 2010)Google Scholar
  10. 10.
    F.StP.D. Bunker, C.A. Maggs, J.A. Brodie, A.R. Bunker, Seasearch Guide to Seaweeds of Britain and Ireland (Marine Conservation Society, Ross-on-Wye, 2010)Google Scholar
  11. 11.
    W. Braune Meeresalgen, Ein Farbbildführer zu den verbreiteten benthischen Grün- Braun- und Rotalgen der Weltmeere (A.R.G. Gantner Verlag, Ruggell, 2008)Google Scholar
  12. 12.
    A. Tariq, J. Ara, V. Sultana, S. Ehteshamul-Haque, M. Athar, Antioxidant potential of seaweeds occurring at Karachi coast of Pakistan. J. Appl. Bot. Food Qual. 84, 207–212 (2011)Google Scholar
  13. 13.
    F.A. Agili, S.F. Mohamed, Polysaccharides from Padina pavonia: chemical structural and antioxidant activity. Aust. J. Basic Appl. Sci. 6, 277–283 (2012)Google Scholar
  14. 14.
    E.A.C. Guedes, T.G. da Silva, J.S. Aguiar, L.D. de Barros, L.M. Pinotti, A.E.G. Sant’Ana, Cytotoxic activity of marine algae against cancerous cells. Rev. Bras. Farmacogn. 23, 668–673 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Stanojković, K. Šavikin, G. Zdunić, Z. Kljajić, N. Grozdanić, J. Antić, In vitro antitumoral activities of Padina pavonia on human cervix and breast cancer cell lines. J. Med. Plants Res (2014).  https://doi.org/10.5897/JMPR012.695 CrossRefGoogle Scholar
  16. 16.
    P.P.S. Rao, P. Sreenivasa Rao, S.M. Karmarkar, Antibacterial activity from Indian species of Sargassum. Bot. Mar. 31, 295–298 (1988)Google Scholar
  17. 17.
    E.S. El-Fatimy, A.A.M. Said, Antibacterial activity of methanolic extract of dominant marine alga (Padina pavonia) of Tolmeta Coasts. Libya. J. Am. Sci. 7, 745–751 (2011)Google Scholar
  18. 18.
    W.J. Yoon, Y.M. Ham, K.N. Kim, S.Y. Park, N.H. Lee, C.G. Hyun, W.J. Lee, Anti-inflammatory activity of brown algae Dictyota dichotoma in murine macrophage RAW 264.7 cells. J. Med. Plants Res. 3, 001–008 (2009)CrossRefGoogle Scholar
  19. 19.
    M.O. Germoush, Antioxidant and anti-inflammatory effects of Padina pavonia and Turbenaria ornata in streptozotocin/nicotinamide diabetic rats. Life Sci. J. 10, 1265–1271 (2013)Google Scholar
  20. 20.
    C. Parthiban, C. Saranya, K. Girija, A. Hemalatha, M. Suresh, P. Anantharaman, Evaluation of in vitro antioxidant properties of selected seaweeds from Tuticorin coast. Int. J. Current Microbiol. App. Sci. 2, 64–73 (2013)Google Scholar
  21. 21.
    M.D. Deyab, T. Elkatony, F. Ward, Qualitative and quantitative analysis of phytochemical studies on brown Seaweed, Dictyota dichotoma. IJEDR 4, 674–678 (2016)Google Scholar
  22. 22.
    N. Ammar, R. Aydi Ben Abdallah, H. Jabnoun-Khiareddine, A. Nefzi, S. Rguez, M. Daami-Remadi, Sargassum vulgare extracts as an alternative to chemical fungicide for the management of fusarium dry rot in potato. J. Agric. Sci. Food Res. 8, 197 (2017)Google Scholar
  23. 23.
    G. Sudha, A. Balasundaram, Analysis of bioactive compounds in Padina pavonica using HPLC, UV-VIS and FTIR techniques. J. Pharmacogn. Phytochem. 7, 3192–3195 (2018)Google Scholar
  24. 24.
    L. Mhadhebi, A. Laroche, J. Robert, A. Bouraoui, Antioxidant, anti-inflammatory, and antiproliferative activities of organic fractions from the Mediterranean brown seaweed Cystoseira sedoides. Can. J. Physiol. Phamracol. 89, 911–921 (2011)CrossRefGoogle Scholar
  25. 25.
    H.J. Dorman, O. Bachmayer, M. Kosar, R. Hiltunen, Antioxidant properties of aqueous extracts from selected Lamiaceae species grown in Turkey. J. Agric. Food Chem. 52, 762–770 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Oyaizu, Studies on products of browning reaction prepared from glucoseamine. Jpn. J. Nutr. 44, 307–314 (1986)CrossRefGoogle Scholar
  27. 27.
    M. Nishimiki, N.A. Rao, K. Yagi, The occurrence of super-oxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849–853 (1972)CrossRefGoogle Scholar
  28. 28.
    K. Slinkard, V.L. Slingleton, Total phenolic analyses: automation and comparison with manual method. Am. J. Enol. Vitic. 28, 49–55 (1997)Google Scholar
  29. 29.
    A. Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 91, 571–577 (2005)CrossRefGoogle Scholar
  30. 30.
    NCCLS (National Commitee for Clinical Laboratory Standards), Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi: proposed standard M38-P. NCCLS, Wayne, PA, USA (1998)Google Scholar
  31. 31.
    S.D. Sarker, L. Nahar, Y. Kumarasamy, Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42, 321–324 (2007)CrossRefGoogle Scholar
  32. 32.
    T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)CrossRefGoogle Scholar
  33. 33.
    D. Balakrishnan, D. Kandasamy, P. Nithyanand, A review on antioxidant activity of marine organisms. Int. J. Chem. Technol. Res. 6, 3431–3436 (2014)Google Scholar
  34. 34.
    I.P. Fernando, M. Kim, K.T. Son, Y. Jeong, Y.J. Jeon, Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J. Med. Food 19, 615–628 (2016)CrossRefGoogle Scholar
  35. 35.
    S.M.M. Shanab, E.A. Shalaby, E.A. El-Fayoumy, Enteromorpha compressa exhibits potent antioxidant activity. J. Biomed. Biotechnol. (2011).  https://doi.org/10.1155/2011/726405 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    K. Sivakumar, S.V. Rajagopal, Radical scavenging activity of green algal species. J. Pharm. Res. 4, 723–725 (2011)Google Scholar
  37. 37.
    Z. Demirel, F.F. Yilmaz-Koz, N.U. Karabay-Yavasoglu, G. Ozdemir, A. Sukatar, Antimicrobial and antioxidant activeities of solvent extracts and the essential oil composition of Laurencia obtusa and Laurencia obtusa var. pyramidata. Rom. Biotechnol. Lett. 16, 5927–5936 (2011)Google Scholar
  38. 38.
    S.J. Heo, H.S. Cha, Antioxidant activities of chlorophyta and phaeophyta from Jeju Island. Algae 20, 251–260 (2005)CrossRefGoogle Scholar
  39. 39.
    K.N.C. Murthy, A. Vanilha, J. Rajesha, M.M. Swamy, P.R. Swmya, G.A. Ravishankar, In vitro antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sci. 76, 1381–1390 (2005)CrossRefGoogle Scholar
  40. 40.
    R. Uma, V. Sivasubramanian, S. Niranjali, Devaraj, Evaluation of in vitro antioxidant activities and antiproliferative activity of green microalgae, Desmococcus olivaceous and Chlorococcum humicola. Aust. J. Basic Appl. Sci. 2, 82–93 (2011)Google Scholar
  41. 41.
    H.H. Omar, H.M. Shiekh, N.M. Gumgumjee, M.M. El-Kazanm, A.M. El-Gendy, Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. Afr. J. Biotechnol. 11, 13576–13585 (2012)Google Scholar
  42. 42.
    C. Ibtissam, R. Hassane, M.L. Jose, D.S.J. Francisco, G.V.J. Antonio, B. Hassan. K. Mohamed, Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. Afr. J. Biotechnol. 8, 1258–1262 (2009)Google Scholar
  43. 43.
    L. Jeyanthi Rebecca, V. Dhanalakshmi, T. Thomas, A comparison between the effects of three algal extracts against pathogenic bacteria. J. Chem. Pharm. Res. 4, 4859–4863 (2012)Google Scholar
  44. 44.
    J. Heijenoort, Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11, 25–36 (2001)CrossRefGoogle Scholar
  45. 45.
    V. Farkaš, Structure and biosynthesis of fungal cell walls: methodological approaches. Folia Microbiol. 48, 469–478 (2003)CrossRefGoogle Scholar
  46. 46.
    Y. Yang, E.J. Anderson, Antimicrobial activity of a porcine myeloperozidase against plant phatogenic bacteria and fungi. J. Appl. Microbiol. 86, 211–220 (1999)CrossRefGoogle Scholar
  47. 47.
    V.K. Bajpai, Antimicrobial bioactive compounds from marine algae: a mini review. Indian J. Mar Sci. 45, 1076–1085 (2016)Google Scholar
  48. 48.
    N.E. Awad, M.A. Selim, H.M. Metawe, A.A. Matloub, Cytotoxic xenicane diterpenes from the brown alga Padina pavonia (L.) Gaill. Phytother. Res. 22, 1610–1613 (2008)CrossRefGoogle Scholar
  49. 49.
    E. Hussain, L.J. Wang, B. Jiang, S. Riaz, G.Y. Butt, D.Y. Shi, A review of the components of brown seaweeds as potential candidates in cancer therapy. RSC Adv. 6, 12592–12610 (2016)CrossRefGoogle Scholar
  50. 50.
    J. Chen, H. Li, Z. Zhao, X. Xia, B. Li, J. Zhang, X. Yan, Diterpenes from the marine algae of the genus Dictyota. Mar. Drugs. 16, 159 (2018)CrossRefGoogle Scholar
  51. 51.
    L.A.R.D. Souza, C.M.P.G. Dore, A.J.G. Castro, T.C.G.D. Azevedo, M.T.B.D. Oliveira, M.D.F.V. Moura, N.M.B. Benevides, E.L. Leite, Galactans from the red seaweed Amansia multifida and their effects on inflammation, angiogenesis, coagulation and cell viability. Biomed. Prev. Nutr. 2, 154–162 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marijana Kosanić
    • 1
  • Branislav Ranković
    • 1
  • Tatjana Stanojković
    • 2
  1. 1.Department of Biology, Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Institute of Oncology and Radiology of SerbiaBelgradeSerbia

Personalised recommendations