Advertisement

Optimization of phenolic compounds extracting conditions from Ficus racemosa L. fruit using response surface method

  • Gayathri Jagadeesan
  • Kasipandi Muniyandi
  • Ashwini Lydia Manoharan
  • Suman Thamburaj
  • Saikumar Sathyanarayanan
  • Parimelazhagan Thangaraj
Original Paper
  • 29 Downloads

Abstract

Fig fruits are widely known for its potential bioactivities but still many wild species were not phytochemically explored. The optimization of extracting conditions for these phytochemical could be useful to commercialize these wild fruits. In this study, ethanol concentration, extracting time and temperature was optimized for extracting Ficus racemosa polyphenols using response surface methodology. Central composite design was employed to investigate the effects of factors on responses such as, total phenolic content (TPC), total flavonoid content (TFC) and 2,2-diphenyl-1-picryl hydrazyl radical scavenging activity (DPPH). Based on the results 40% of ethanol concentration with 42.50 °C as extracting temperature for 80 min of extraction was optimized for extracting F. racemosa polyphenolic compounds. From the optimized conditions TPC (80.10 ± 2.51 mg GAE/g extract), TFC (79.31 ± 5.11 mg RE/g extract) were significantly found with the inhibition of 51.20 ± 3.21% on DPPH radical. The proposed model confirmed the extracting ability of phenolics and flavonoids from fruit and implies this optimization is efficient.

Keywords

Antioxidant Ficus racemosa Phenolics Flavonoids Response surface methodology 

References

  1. 1.
    S. Saravanan, T. Parimelazhagan, Food Sci. Hum. Wellness 3, 56–64 (2014)CrossRefGoogle Scholar
  2. 2.
    O.M. Mosquera, Y.M. Correa, D.C. Buitrago, J. Niño, Mem. Inst. 102, 631–634 (2007)CrossRefGoogle Scholar
  3. 3.
    H.E. Seifried, D.E. Anderson, E.I. Fisher, J.A. Milner, J. Nutr. Biochem. 18, 567–579 (2007)CrossRefGoogle Scholar
  4. 4.
    P.M. Kris-Etherton, K.D. Hecker, A. Bonanome, S.M. Coval, A.E. Binkoski, K.F. Hilpert, T.D. Etherton, Am. J. Med. Sci. 113, 71–88 (2002)Google Scholar
  5. 5.
    K.B. Pandey, S.I. Rizvi, Oxid. Med. Cell Longev. 2, 270–278 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Richter, I. Schellenberg, Anal. Bioanal. Chem. 387, 2207–2217 (2007)CrossRefGoogle Scholar
  7. 7.
    T.L. Miron, M. Herrero, E. Ibáñez, J. Chromatogr. A 1288, 1–9 (2013)CrossRefGoogle Scholar
  8. 8.
    G.E.P. Box, K.B. Wilson, J. R. Stat. Soc. 13, 1–45 (1951)Google Scholar
  9. 9.
    C. Liyana-Pathirana, F. Shahidi, Food Chem. 93, 47–56 (2005)CrossRefGoogle Scholar
  10. 10.
    S.W. Chan, C.Y. Lee, C.F. Yap, W.W. Aida, C.W. Ho, Food Res. Int. 16, 203–213 (2009)Google Scholar
  11. 11.
    J. Wang, B. Sun, Y. Cao, Y. Tian, X. Li, Food Chem. 106, 804–810 (2008)CrossRefGoogle Scholar
  12. 12.
    X. Wang, Y. Wu, G. Chen, W. Yue, Q. Liang, Q. Wu, Ultrason. Sonochem. 20, 846–854 (2013)CrossRefGoogle Scholar
  13. 13.
    B. Yang, X. Liu, Y. Gao, Innov. Food Sci. Emerg. Technol. 10, 610–615 (2009)CrossRefGoogle Scholar
  14. 14.
    T. Belwal, P. Dhyani, I.D. Bhatt, R.S. Rawal, V. Pande, Food Chem. 207, 115–124 (2016)CrossRefGoogle Scholar
  15. 15.
    N. Ilaiyaraja, K.R. Likhith, G.S. Babu, F. Khanum, Food Chem. 173, 348–354 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Ghafoor, Y.H. Choi, J.Y. Jeon, I.H. Jo, J. Agric. Food Chem. 57, 4988–4994 (2009)CrossRefGoogle Scholar
  17. 17.
    T. Suman, R. Elangomathavan, M. Kasipandi, K. Chakkaravarthi, D. Tamilvendan, T. Parimelazhagan, Egypt. J. Basic Appl. Sci. 5, 130–137 (2018)CrossRefGoogle Scholar
  18. 18.
    R. Chandran, S. Sathyanarayanan, M. Rajan, M. Kasipandi, T. Parimelazhagan, Bangladesh J. Pharmacol. 10, 672–680 (2015)CrossRefGoogle Scholar
  19. 19.
    P.S. Sreeja, K. Arunachalam, D.T. de Oliveira Martins, J.C. da Silva Lima, S.O. Balogun, E. Pavan, T. Parimelazhagan, J. Ethnopharmacol. 225, 71–80 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Muniyandi, E. George, P. Thangaraj, Medicinal Plants: Promising Future for Health and New Drugs, vol 15 (CRC Press, Boca Raton, 2018)Google Scholar
  21. 21.
    U.B. Parveen, S. Roy, A. Kumar, J. Ethnopharmacol. 113, 387–399 (2007)CrossRefGoogle Scholar
  22. 22.
    K. Arunachalam, T. Parimelazhagan, J. Ethnopharmacol. 147, 302–310 (2013)CrossRefGoogle Scholar
  23. 23.
    E.S.S. Abdel-Hameed, Food Chem. 114, 1271–1277 (2009)CrossRefGoogle Scholar
  24. 24.
    B. Sultana, F. Anwar, Food Chem. 108, 879–884 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Taskeen, I. Naeem, H. Mubeen, T. Mehmood, N Y Sci. J. 2, 32–35 (2009)Google Scholar
  26. 26.
    R. Murugan, K. Arunachalam, T. Parimelazhagan, Food Sci. Biotechnol. 21, 59–67 (2012)CrossRefGoogle Scholar
  27. 27.
    H.P.S. Makkar, Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual (Kluwer Academic Publishers, Dordrecht, 2003)CrossRefGoogle Scholar
  28. 28.
    J. Zhishen, T. Mengecheng, W. Jianming, Food Chem. 64, 555–559 (1999)CrossRefGoogle Scholar
  29. 29.
    A. Braca, N. De Tommasi, L. Di Bari, C. Pizza, M. Politi, I. Morelli, J. Nat. Prod. 64, 892–895 (2001)CrossRefGoogle Scholar
  30. 30.
    K. Muniyandi, E. George, V. Mudili, N.K. Kalagatur, A.J. Anthuvan, K. Krishna, P. Thangaraj, G. Natarajan, Agric. Nat. Resour. 51, 63–73 (2017)Google Scholar
  31. 31.
    A. Hubaux, G. Vos, Anal. Chem. 42, 849–885 (1970)CrossRefGoogle Scholar
  32. 32.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology, Process and Product Optimization Using Designed Experiments, 4th edn. (Wiley, Hoboken, 2009)Google Scholar
  33. 33.
    L. Quanhong, F. Caili, Food Chem. 92, 701–706 (2005)CrossRefGoogle Scholar
  34. 34.
    T. Gomes, T. Delgado, A. Ferreira, J.A. Pereira, P. Baptista, S. Casal, E. Ramalhosa, Ind. Crops Prod. 44, 622–629 (2013)CrossRefGoogle Scholar
  35. 35.
    H.N. Rajha, N. El Darra, Z. Hobaika, N. Boussetta, E. Vorobiev, R.G. Maroun, N. Louka, Food Nutr. Sci. 5, 397 (2014)Google Scholar
  36. 36.
    U.J. Vajić, J. Grujić-Milanović, J. Živković, K. Šavikin, D. Gođevac, Z. Miloradović, N. Mihailović-Stanojević, Ind. Crops Prod. 74, 912–917 (2015)CrossRefGoogle Scholar
  37. 37.
    T. Madhujith, F. Shahidi, Food Chem. 117, 615–620 (2009)CrossRefGoogle Scholar
  38. 38.
    M.B. Hossain, N.P. Brunton, A. Patras, B. Tiwari, C.P. O’Donnell, A.B. Martin-Diana, C. Barry-Ryan, Ultrason. Sonochem. 19, 582–590 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Scalbert, C. Manach, C. Morand, C. Rémésy, L. Jiménez, Crit. Rev. Food Sci. Nutr. 45, 287–306 (2005)CrossRefGoogle Scholar
  40. 40.
    P. Xu, J. Bao, J. Gao, T. Zhou, Y. Wang, BioResources 7, 2431–2443 (2012)Google Scholar
  41. 41.
    C.Y. Guo, J. Wang, Y. Hou, Y.M. Zhao, L.X. Shen, D.S. Zhang, Pharmacogn. Mag. 9, 192–195 (2013)CrossRefGoogle Scholar
  42. 42.
    A.R. Proteggente, S. Wiseman, F.H.M.M. van de Put, C.A. Rice-Evans, in Flavonoids in Health and Disease, ed. by C.A. Rice-Evans, L. Packer (Marcell Dekker Inc, New York, 2003), pp. 71–96Google Scholar
  43. 43.
    N.I. Bazykina, A.N. Nikolaevskii, T.A. Filippenko, V.G. Kaloerova, Pharm. Chem. J. 36, 46–49 (2002)CrossRefGoogle Scholar
  44. 44.
    R. Huang, E. Mendis, S.K. Kim, Int. J. Biol. Macromol. 36, 120–127 (2005)CrossRefGoogle Scholar
  45. 45.
    M.J. Simirgiotis, Molecules 18, 2061–2080 (2013)CrossRefGoogle Scholar
  46. 46.
    E. Karacabey, G. Mazza, Food Chem. 119, 343–348 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gayathri Jagadeesan
    • 1
  • Kasipandi Muniyandi
    • 1
  • Ashwini Lydia Manoharan
    • 1
  • Suman Thamburaj
    • 1
  • Saikumar Sathyanarayanan
    • 1
  • Parimelazhagan Thangaraj
    • 1
  1. 1.Bioprospecting Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations