Advertisement

Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp.

  • B. Carbas
  • M. V. Salinas
  • C. Serrano
  • J. A. Passarinho
  • M. C. Puppo
  • C. P. Ricardo
  • C. Brites
Original Paper
  • 31 Downloads

Abstract

Ceratonia siliqua and some species of Prosopis (Fabaceae family) are commonly known as carob trees. The flours obtained from their pods are used in the food industry, as cocoa substitute in the confectionery and also used in beverages and mixed with products derived from cereals. The aim of this study was to compare and characterize the physical and chemical properties, specially the antioxidant activities, of the two commercial carob flours. Commercial Prosopis spp. (mainly from P. alba) flour exhibited high content of protein, starch and fat, while commercial flour from C. siliqua had a lower content of these compounds, but higher antioxidant activity. By nuclear magnetic resonance (NMR) the aqueous extracts of the two carob flours were analysed and concluded that they had similar content of sucrose, but C. siliqua had more monosaccharides and pinitol. This important cyclitol has beneficial physiological effects, improving the glycaemic level and, thus, having a great potential in the food industry. We conclude that the commercial flour of C. siliqua has a better nutritional potential than that of Prosopis spp., owing to dietary fiber, total phenols, pinitol and antioxidant activity. Our results corroborate the nutritional benefits of the commercial supplements already available for healthy food formulations.

Keywords

Food quality Phenolics Chromatography analysis Sugars Antioxidants 

Notes

Acknowledgements

The bilateral Co-operation between Argentine and Portugal, “Development of high protein formulations for bakery and confectionery”, supported by Ministerio de Ciencia, Tecnologia e Innovacion Productiva de la Republica Argentina (MINCyT) and Fundação para a Ciência e a Tecnologia (FCT) (Procº 441.00) from Portugal is acknowledged. The NMR spectrometers used are part of The National NMR Facility, supported by Fundação para a Ciência e a Tecnologia (RECI/BBB-BQB/0230/2012), and we thank Doctor Helena Matias for the technical assistance with the NMR equipment.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    N. Winer, Int. Tree Crop 1, 15–26 (1980)CrossRefGoogle Scholar
  2. 2.
    A.K. Yousif, H.M. Alghzawi, Food Chem. 69, 283–287 (2000)CrossRefGoogle Scholar
  3. 3.
    D.P. Makris, P. Kefalas, Food Technol. Biotechnol. 42, 105–108 (2004)Google Scholar
  4. 4.
    A.V. Stavroula, G. Ouzounidou, M. Ozturk, G. Görk, Proc. Soc. Behav. Sci. 19, 750–755 (2011)CrossRefGoogle Scholar
  5. 5.
    FAOSTAT (2017) http://www.fao.org/faostat/en/#data/QC/visualize. Accessed June 2018
  6. 6.
    M.L. Cardozo, R.M. Ordoñez, I.C. Zampini, A.S.C.G. Dibenedetto, M.I. Isla, Food Res. Int. 43, 1505–1510 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Felker, G. Takeoka, L. Dao, Food Rev. Int. 29, 49–66 (2013)CrossRefGoogle Scholar
  8. 8.
    H.E. Hajaji, N. Lachkar, K. Alaoui, Y. Cherrah, A. Farah, A. Ennabili, B.E. Bali, M. Lachkar, Rec. Nat. Prod. 4, 193–204 (2010)Google Scholar
  9. 9.
    F.A. Ayaz, H. Torun, S. Ayaz, P.J. Correia, M. Alaiz, C. Sanz, J. Gruz, M. Strnad, Food Qual. 30, 1040–1055 (2007)CrossRefGoogle Scholar
  10. 10.
    L. Bravo, N. Grados, F. Saura-Calixto, Sci. Food Agric. 65, 303–306 (1994)CrossRefGoogle Scholar
  11. 11.
    S. Marakis, Food Sci. Technol. 33, 365–383 (1996)Google Scholar
  12. 12.
    D. Prokopiuk, D. Cruz, N. Grados, O. Garro, A. Chirat, Multequina 9, 35–45 (2000)Google Scholar
  13. 13.
    D. Prokopiuk, N.M. Navarrete, A. Andrés, A. Chiralt, G. Cruz, Int. Food Prop. 13, 692–701 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Bengoechea, A. Romero, A. Villanueva, G. Moreno, M.B. Alaiz, F. Millán, A. Guerrero, M.C. Puppo, Food Chem. 107, 675–683 (2008)CrossRefGoogle Scholar
  15. 15.
    M.V. Salinas, B. Carbas, C. Brites, M.C. Puppo, Food Bioprocess Technol. 8, 1561–1570 (2015)CrossRefGoogle Scholar
  16. 16.
    M.G. Bernardo-Gil, R. Roque, B. Luisa, L.B. Roseiro, L.C. Duarte, F. Girio, P. Esteves, Supercrit. Fluids 59, 36–42 (2011)CrossRefGoogle Scholar
  17. 17.
    R. Avallone, M. Plessi, M. Baraldi, A. Monzani, Food Compos. Anal. 10, 166–172 (1997)CrossRefGoogle Scholar
  18. 18.
    S.K. Choge, N.M. Pasiecznik, M. Harvey, J. Wright, S.Z. Awan, P.J.C. Harris, Water SA 33, 419–424 (2007)Google Scholar
  19. 19.
    S. Gruendel, A.L. Garcia, B. Otto, K. Wagner, M. Bidlingmaier, L. Burget, M.O. Weickert, G. Dongowski, M. Speth, N. Katz, C. Koebnick, Br. J. Nutr. 98, 1170–1177 (2007)PubMedGoogle Scholar
  20. 20.
    S. Kumazawa, M. Taniguchi, Y. Suzuki, M. Shimura, M. Kwon, T. Nakayama, J. Agric. Food Chem. 50, 373–377 (2002)CrossRefGoogle Scholar
  21. 21.
    L. Custodio, E. Fernandes, A.L. Escapa, A. Fajardo, R. Aligué, F. Alberício, N.R. Neng, J.M.F. Nogueira, A. Romano, J. Agric. Food Chem. 59, 7005–7012 (2011)CrossRefGoogle Scholar
  22. 22.
    I. Turhan, Int. J. Food Prop. 17, 363–370 (2014)CrossRefGoogle Scholar
  23. 23.
    S.H. Bates, R.B. Jones, C.J. Bailey, Br. J. Pharmacol. 130, 1944–1948 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Fagg, J. Stewart, J. Arid Environ. 27, 3–25 (1994)CrossRefGoogle Scholar
  25. 25.
    M.J. Correa, M.V. Salinas, B. Carbas, C. Ferrero, C. Brites, M.C. Puppo, J. Food Sci. Technol. 54, 2104–2114 (2017)CrossRefGoogle Scholar
  26. 26.
    R.G. McGuire, HortScience 27, 1254–1255 (1992)Google Scholar
  27. 27.
    International Organization for Standardization—ISO 20483:2006—cereals and pulses—determination of the nitrogen content and calculation of the crude protein content—Kjeldahl method; ISO 24557:2009—pulses—Determination of moisture content—air-oven methodGoogle Scholar
  28. 28.
    American Association of Cereal Chemists—AACC. Approved methods of analysis: method 08-01.01: ash-basic method; method 30-25.01: crude fat in wheat, corn, and soy flour, feeds, and mixed feeds; method 32-05.01: total dietary fiber; method 80-10.01: determination of glucose in sugar mixtures-glucose oxidase method. (11th ed.). St. Paul. (1999)Google Scholar
  29. 29.
    M. Boehringer, Methods of Enzymatic Food Analysis. (Boehringer Publications, Ingelheim am Rhein, 1992)Google Scholar
  30. 30.
    L.E. Rodriguez-Saona, M.M. Giusti, R.E. Wrolstad, J. Food Sci. 6, 458–465 (1998)CrossRefGoogle Scholar
  31. 31.
    D. Asami, Y.-J. Hong, D. Barrett, A. Mitchell, J. Agric. Food Chem. 51, 1237–1241 (2003)CrossRefGoogle Scholar
  32. 32.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J. Food Compos. Anal. 19, 669–675 (2006)CrossRefGoogle Scholar
  33. 33.
    I.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  34. 34.
    C. Serrano, O. Matos, B. Teixeira, C. Ramos, N. Neng, J. Nogueira, M.L. Nunes, A. Marques, J. Sci. Food Agric. 91, 1554–1560 (2011)CrossRefGoogle Scholar
  35. 35.
    L. Iipumbu, Compositional analysis of locally cultivated carob (Ceratonia siliqua) cultivars and development of nutritional food products for a range of market sectors. (Doctoral thesis, Stellenbosch: Stellenbosch University). (2008)Google Scholar
  36. 36.
    P. Felker, J.C. Guevara, For. Ecol. Manag. 186, 271–286 (2003)CrossRefGoogle Scholar
  37. 37.
    A.G. Galán, A.D. Corrêa, C.M.P. Abreu, M.F.P. Barcelos, Arch. Latinoam. Nutr. 58, 309–315 (2008)PubMedGoogle Scholar
  38. 38.
    Z.E. Sikorski, Chemical and Functional Properties of Food Components, 2nd edn. (CRC Press, ‎Boca Raton, 2002), pp. 110, 228, 240–241Google Scholar
  39. 39.
    B. Biner, H. Gubbuk, M. Karham, M. Aksu, M. Pekmeczi, Food Chem. 100, 1453–1455 (2007)CrossRefGoogle Scholar
  40. 40.
    I.J. Stavrou, A. Christou, C.P. Kapnissi-Christodoulou, Food Chem. 269, 355–374 (2018)CrossRefGoogle Scholar
  41. 41.
    L. Perez-Olleros, M. Garcia-Cuevas, B. Ruiz-Roso, A. Requejo, Int. Sci. Food Agric. 79, 173–178 (1999)CrossRefGoogle Scholar
  42. 42.
    B. Becker, O.K.K. Grosjean, J. Agric. Food Chem. 28, 22–25 (1980)CrossRefGoogle Scholar
  43. 43.
    R. Mahtout, V.M. Ortiz-Martínez, M.J. Salar-García, I. Gracia, F.J. Hernández-Fernández, A. Pérez de los Ríos, F. Zaidia, S. Sanchez-Segado, L.J. Lozano-Blanco, Sustainability 10, 90 (2018)CrossRefGoogle Scholar
  44. 44.
    I. Batlle, J. Tous, Carob tree Ceratonia siliqua L. Promoting the conservation and use of underutilized and neglected crops. 17. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome 1997Google Scholar
  45. 45.
    A. Hernández-Mijares, C. Bañuls, J.E. Peris, N. Monzó, A. Jover, L. Bellod, V. Victor, M. Rocha, Food Chem. 141, 1267–1272 (2013)CrossRefGoogle Scholar
  46. 46.
    C.M. Kerksick, C.D. Wilborn, W.I. Campbell, T.M. Harvey, B.M. Marcello, M.D. Roberts, A.G. Parker, A.G. Byars, L.D. Greenwood, A.L. Almada, R.B. Kreider, M.J. Greenwood, J. Strength Cond. Res. 23, 2673–2682 (2009)CrossRefGoogle Scholar
  47. 47.
    G. Picariello, L. Sciammaro, F. Siano, M.G. Volpe, M.C. Puppo, G. Mamone, Food Res. Int. 99, 730–738 (2017)CrossRefGoogle Scholar
  48. 48.
    N. Petkova, I. Petrov, I. Ivanov, R. Mihov, R. Hadjikinova, M. Ognyanov, V. Nikolova, Int. J. Pharm. Sci. Rev. Res. 9, 2189–2195 (2017)Google Scholar
  49. 49.
    P. Wursch, S. Del Vedove, J. Rosset, M. Smiley, Lebenson Wiss. Technol. 17, 351–354 (1984)Google Scholar
  50. 50.
    A. Curtis, D. Race, Carob Agroforestry in the Low Rainfall Murray Valley: A Market and Economic Assessment. Publication No. 98/8. Rural Industry Research and Development Corporation (RIRDC), Australia (1998)Google Scholar
  51. 51.
    R. Apak, K. Guclu, B. Demirata, M. Ozyurek, S.E. Celik, K.I. Berker, D. Ozyurt, Molecules 12, 1246–1547 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INIAV, Instituto Nacional de Investigação Agrária e VeterináriaOeirasPortugal
  2. 2.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Fac. Ciencias Exactas-UNLP-CIC-CONICETLa PlataArgentina
  3. 3.Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  4. 4.ITQB, Instituto de Tecnologia Química e BiológicaOeirasPortugal

Personalised recommendations