A comparative study of three drying methods on the phenolic profile and biological activities of Salvia absconditiflora
- 68 Downloads
Abstract
Drying method is one of the most important steps in the preparation of plant materials for phytochemical analysis and biological evaluation. In this sense, this research endeavoured to evaluate the effects three drying methods (oven, freeze, and shade drying) on phytochemical component, antioxidant, and enzyme inhibitory effects of Salvia absconditiflora Greuter & Burdet. Antioxidant activities were screened by phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and metal chelating activity. Enzyme inhibitory effects were assessed against cholinesterases (AChE, BChE), tyrosinase, α-amylase, and α-glucosidase. Drying methods were found to affect the chemical component and biological properties. Shade drying showed the highest TPC (99.33 mgGAE/g) and TFC (46.88 mgRE/g) followed by oven (58.15 mgGAE/g for TPC, 40.65 for TFC), and freeze drying (43.73 mgGAE/g for TPC, 36.68 mgRE/g for TFC). The main phenolic compound characterized by HPLC was rosmarinic acid, which was observed to be highest following shade drying. Shade drying contained highest total bioactive compounds and exhibited the strongest antioxidant properties. The enzyme inhibitory effects of S. absconditiflora performed using different depends were dependent on the drying methods. Our results tend to suggest that shade drying was most suitable for S. absconditiflora because of possessing the highest rosmarinic acid and biological properties.
Keywords
Drying methods Rosmarinic acid Antioxidant Enzyme inhibitory effectReferences
- 1.N. Tan, S. Yazici-Tutunis, Y. Yesil, B. Demirci, E. Tan, Rec. Nat. Prod. 11, 456–461 (2017)Google Scholar
- 2.J.B. Walker, K.J. Sytsma, J. Treutlein, M. Wink, Am. J. Bot. 91(7), 1115–1125 (2004)Google Scholar
- 3.G. Kamatou, N. Makunga, W. Ramogola, A. Viljoen, J. Ethnopharmacol. 119(3), 664–672 (2008)Google Scholar
- 4.G. Kamatou, R. Van Zyl, S. Van Vuuren, A. Figueiredo, J. Barroso, L. Pedro, A. Viljoen, S. Afr. J. Bot. 74(2), 230–237 (2008)Google Scholar
- 5.M.R. Loizzo, M. Abouali, P. Salehi, A. Sonboli, M. Kanani, F. Menichini, R. Tundis, Nat. Prod. Res. 28(24), 2278–2285 (2014)Google Scholar
- 6.M. Mohammadhosseini, J Essent. Oil Bear. PL. 18(2), 464–476 (2015)Google Scholar
- 7.Y. Xu, R. Wan, Y. Lin, L. Yang, Y. Chen, C. Liu, Asian J. Pharmacodyn. Pharmacokinet. 7(2), 99–130 (2007)Google Scholar
- 8.Y.-B. Wu, Z.-Y. Ni, Q.-W. Shi, M. Dong, H. Kiyota, Y.-C. Gu, B. Cong, Chem. Rev. 112(11), 5967–6026 (2012)Google Scholar
- 9.I. Cvetkovikj, G. Stefkov, J. Acevska, J.P. Stanoeva, M. Karapandzova, M. Stefova, A. Dimitrovska, S. Kulevanova, J. Chromatogr. A 1282, 38–45 (2013)Google Scholar
- 10.M.B. Bahadori, H. Valizadeh, B. Asghari, L. Dinparast, M.M. Farimani, S. Bahadori, J. Funct. Food 18, 727–736 (2015)Google Scholar
- 11.P. Salehi, A. Sonboli, M. Dayeni, F. Eftekhar, M. Yousefzadi, Chem. Nat. Compd. 44(1), 102–105 (2008)Google Scholar
- 12.T. Baytop, Türkiyede bitkiler ile tedavi (geçmişte ve bugün), 2nd edn. (İstanbul Üniversitesi, Istanbul, 1984), pp. 142–143Google Scholar
- 13.T. Baytop, Türkçe bitki adları sözlüğü, 2nd edn. (Turk Dil Kurumu, Ankara, 1994), pp. 20–21Google Scholar
- 14.G. Honda, E. Yeşilada, M. Tabata, E. Sezik, T. Fujita, Y. Takeda, Y. Takaishi, T. Tanaka, J. Ethnopharmacol. 53(2), 75–87 (1996)Google Scholar
- 15.J. Yuan, L.-J. Hao, G. Wu, S. Wang, J. Duan, G.-Y. Xie, M.-J. Qin, J. Funct. Foods. 19 786–795 (2015)Google Scholar
- 16.L. Zhang, T. Liu, Y. Xue, C. Liu, H. Ru, M. Dong, Z. Yu, J. Food Process Eng. 39(2), 107–120 (2016)Google Scholar
- 17.P. Juyan, G. Yuehua, W. Junru, L. Yan, L. Zongsuo, Acta Bot. Boreal.-Occident. Sin. 26(10), 2044–2050 (2006)Google Scholar
- 18.Y. Soysal, S. Öztekin, J. Agric. Eng. Res. 78(2), 159–166 (2001)Google Scholar
- 19.J. Huang, M. Zhang, Dry. Technol. 34(8), 900–911 (2016)Google Scholar
- 20.Y. Zhu, B.-Q. Pu, G.-Y. Xie, M. Tian, F.-Y. Xu, M.-J. Qin, Molecules 19(7), 10440–10454 (2014)Google Scholar
- 21.Y. Chen, A. Martynenko, LWT-Food Sci. Technol. 87 470–477 (2018)Google Scholar
- 22.S.M. Jafari, D. Azizi, H. Mirzaei, D. Dehnad, J. Food Process. Preserv. 40(3), 362–372 (2016)Google Scholar
- 23.X. Jin, T. Oliviero, R. van der Sman, R. Verkerk, M. Dekker, A. van Boxtel, LWT-Food Sci. Technol. 59(1), 189–195 (2014)Google Scholar
- 24.M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, J. Food Eng. 188, 32–49 (2016)Google Scholar
- 25.X.-F. Shi, J.-Z. Chu, Y.-F. Zhang, C.-Q. Liu, X.-Q. Yao, Ind. Crops Prod. 104, 45–51 (2017)Google Scholar
- 26.N. Jiang, C. Liu, D. Li, Z. Zhang, C. Liu, D. Wang, L. Niu, M. Zhang, LWT-Food Sci. Technol. 82 216–226 (2017)Google Scholar
- 27.S. Uysal, G. Zengin, A. Aktumsek, S. Karatas, J. Funct. Foods. 22, 518–532 (2016)Google Scholar
- 28.S. Uysal, A. Ugurlu, G. Zengin, M.C. Baloglu, Y.C. Altunoglu, A. Mollica, L. Custodio, N.R. Neng, J.M. Nogueira, M.F. Mahomoodally, Food Chem. Toxicol. 111, 525–536 (2018)Google Scholar
- 29.G. Zengin, E.J. Llorent-Martínez, M.L. Fernández-de Córdova, M.B. Bahadori, A. Mocan, M. Locatelli, A. Aktumsek, Ind. Crops Prod. 111, 11–21 (2018)Google Scholar
- 30.M.J. Rahman, A.C. de Camargo, F. Shahidi, J. Funct. Foods. 35, 622–634 (2017)Google Scholar
- 31.M.B. Farhat, R. Chaouch-Hamada, J.A. Sotomayor, A. Landoulsi, M.J. Jordán, Ind. Crops Prod. 54, 78–85 (2014)Google Scholar
- 32.R.-L. Qin, C.-N. Lv, Y. Zhao, Y.-D. Zhao, Y. Yu, J.-C. Lu, Ind. Crops Prod. 107, 288–296 (2017)Google Scholar
- 33.J.C. Nunes, M.G. Lago, V.N. Castelo-Branco, F.R. Oliveira, A.G. Torres, D. Perrone, M. Monteiro, Food Chem. 197, 881–890 (2016)Google Scholar
- 34.M. Hossain, C. Barry-Ryan, A.B. Martin-Diana, N. Brunton, Food Chem. 123(1), 85–91 (2010)Google Scholar
- 35.D.S. Sogi, M. Siddiq, K.D. Dolan, LWT-Food Sci. Technol. 62(1), 564–568 (2015)Google Scholar
- 36.Y. Zhang, J.P. Smuts, E. Dodbiba, R. Rangarajan, J.C. Lang, D.W. Armstrong, J. Agric. Food Chem. 60(36), 9305–9314 (2012)Google Scholar
- 37.R. Bruni, G. Sacchetti, Molecules 14(2), 682–725 (2009)Google Scholar
- 38.H. Tanko, D.J. Carrier, L. Duan, E. Clausen, Plant Genet. Resour. 3(2), 304–313 (2005)Google Scholar
- 39.J. Samoticha, A. Wojdyło, K. Lech, LWT-Food Sci. Technol. 66, 484–489 (2016)Google Scholar
- 40.I. Quispe-Fuentes, A. Vega-Gálvez, M. Aranda, J. Sci. Food Agric. 98(11), 4168–4176 (2018)Google Scholar
- 41.A. Horszwald, H. Julien, W. Andlauer. Food Chem. 141(3), 2858–2863 (2013)Google Scholar
- 42.S.T. Ngo, M.S. Li, Mol. Simul. 39(4), 279–291 (2013)Google Scholar
- 43.A.Y. Sun, Q. Wang, A. Simonyi, G.Y. Sun, Neuromol. Med 10(4), 259–274 (2008)Google Scholar
- 44.F. Hiroyuki, Y. Tomohide, O. Kazunori, J. Nutr. Biochem. 12(6), 351–356 (2001)Google Scholar
- 45.M.C.N. Picot, O. Bender, A. Atalay, G. Zengin, L. Loffredo, F. Hadji-Minaglou, M.F. Mahomoodally, Biomed. Pharmacother. 89, 342–350 (2017)Google Scholar
- 46.M.C.N. Picot, M.F. Mahomoodally, Pharm. Biol. 55(1), 864–872 (2017)Google Scholar
- 47.M.T.H. Khan, Curr. Med. Chem. 19(14), 2262–2272 (2012)Google Scholar
- 48.W.V. Graham, A. Bonito-Oliva, T.P. Sakmar, Annu. Rev. Med. 68, 413–430 (2017)Google Scholar
- 49.U. Wehmeier, W. Piepersberg, Appl. Microbiol. Biotechnol. 63(6), 613–625 (2004)Google Scholar
- 50.N. Martins, I.C. Ferreira, in Food Bioactives, ed. by P. Munish (Springer, Cham, 2017), pp. 267–298Google Scholar
- 51.P. Pradeep, Y.N. Sreerama, Food Chem. 247, 46–55 (2018)Google Scholar
- 52.C. De Monte, B. Bizzarri, M.C. Gidaro, S. Carradori, A. Mollica, G. Luisi, A. Granese, S. Alcaro, G. Costa, N. Basilico, S. Parapini, M.M. Scaltrito, C. Masia, F. Sisto, J. Enzyme. Inhib. Med. Chem. 30(6), 1027–1033 (2015)Google Scholar
- 53.A.A. Zielinski, C.W. Haminiuk, C.A. Nunes, E. Schnitzler, S.M. Ruth, D. Granato, Compr. Rev. Food Sci. Food Saf. 13(3), 300–316 (2014)Google Scholar