Advertisement

A comparative study of three drying methods on the phenolic profile and biological activities of Salvia absconditiflora

  • Sengul UysalEmail author
Original Paper
  • 68 Downloads

Abstract

Drying method is one of the most important steps in the preparation of plant materials for phytochemical analysis and biological evaluation. In this sense, this research endeavoured to evaluate the effects three drying methods (oven, freeze, and shade drying) on phytochemical component, antioxidant, and enzyme inhibitory effects of Salvia absconditiflora Greuter & Burdet. Antioxidant activities were screened by phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and metal chelating activity. Enzyme inhibitory effects were assessed against cholinesterases (AChE, BChE), tyrosinase, α-amylase, and α-glucosidase. Drying methods were found to affect the chemical component and biological properties. Shade drying showed the highest TPC (99.33 mgGAE/g) and TFC (46.88 mgRE/g) followed by oven (58.15 mgGAE/g for TPC, 40.65 for TFC), and freeze drying (43.73 mgGAE/g for TPC, 36.68 mgRE/g for TFC). The main phenolic compound characterized by HPLC was rosmarinic acid, which was observed to be highest following shade drying. Shade drying contained highest total bioactive compounds and exhibited the strongest antioxidant properties. The enzyme inhibitory effects of S. absconditiflora performed using different depends were dependent on the drying methods. Our results tend to suggest that shade drying was most suitable for S. absconditiflora because of possessing the highest rosmarinic acid and biological properties.

Keywords

Drying methods Rosmarinic acid Antioxidant Enzyme inhibitory effect 

References

  1. 1.
    N. Tan, S. Yazici-Tutunis, Y. Yesil, B. Demirci, E. Tan, Rec. Nat. Prod. 11, 456–461 (2017)Google Scholar
  2. 2.
    J.B. Walker, K.J. Sytsma, J. Treutlein, M. Wink, Am. J. Bot. 91(7), 1115–1125 (2004)Google Scholar
  3. 3.
    G. Kamatou, N. Makunga, W. Ramogola, A. Viljoen, J. Ethnopharmacol. 119(3), 664–672 (2008)Google Scholar
  4. 4.
    G. Kamatou, R. Van Zyl, S. Van Vuuren, A. Figueiredo, J. Barroso, L. Pedro, A. Viljoen, S. Afr. J. Bot. 74(2), 230–237 (2008)Google Scholar
  5. 5.
    M.R. Loizzo, M. Abouali, P. Salehi, A. Sonboli, M. Kanani, F. Menichini, R. Tundis, Nat. Prod. Res. 28(24), 2278–2285 (2014)Google Scholar
  6. 6.
    M. Mohammadhosseini, J Essent. Oil Bear. PL. 18(2), 464–476 (2015)Google Scholar
  7. 7.
    Y. Xu, R. Wan, Y. Lin, L. Yang, Y. Chen, C. Liu, Asian J. Pharmacodyn. Pharmacokinet. 7(2), 99–130 (2007)Google Scholar
  8. 8.
    Y.-B. Wu, Z.-Y. Ni, Q.-W. Shi, M. Dong, H. Kiyota, Y.-C. Gu, B. Cong, Chem. Rev. 112(11), 5967–6026 (2012)Google Scholar
  9. 9.
    I. Cvetkovikj, G. Stefkov, J. Acevska, J.P. Stanoeva, M. Karapandzova, M. Stefova, A. Dimitrovska, S. Kulevanova, J. Chromatogr. A 1282, 38–45 (2013)Google Scholar
  10. 10.
    M.B. Bahadori, H. Valizadeh, B. Asghari, L. Dinparast, M.M. Farimani, S. Bahadori, J. Funct. Food 18, 727–736 (2015)Google Scholar
  11. 11.
    P. Salehi, A. Sonboli, M. Dayeni, F. Eftekhar, M. Yousefzadi, Chem. Nat. Compd. 44(1), 102–105 (2008)Google Scholar
  12. 12.
    T. Baytop, Türkiyede bitkiler ile tedavi (geçmişte ve bugün), 2nd edn. (İstanbul Üniversitesi, Istanbul, 1984), pp. 142–143Google Scholar
  13. 13.
    T. Baytop, Türkçe bitki adları sözlüğü, 2nd edn. (Turk Dil Kurumu, Ankara, 1994), pp. 20–21Google Scholar
  14. 14.
    G. Honda, E. Yeşilada, M. Tabata, E. Sezik, T. Fujita, Y. Takeda, Y. Takaishi, T. Tanaka, J. Ethnopharmacol. 53(2), 75–87 (1996)Google Scholar
  15. 15.
    J. Yuan, L.-J. Hao, G. Wu, S. Wang, J. Duan, G.-Y. Xie, M.-J. Qin, J. Funct. Foods. 19 786–795 (2015)Google Scholar
  16. 16.
    L. Zhang, T. Liu, Y. Xue, C. Liu, H. Ru, M. Dong, Z. Yu, J. Food Process Eng. 39(2), 107–120 (2016)Google Scholar
  17. 17.
    P. Juyan, G. Yuehua, W. Junru, L. Yan, L. Zongsuo, Acta Bot. Boreal.-Occident. Sin. 26(10), 2044–2050 (2006)Google Scholar
  18. 18.
    Y. Soysal, S. Öztekin, J. Agric. Eng. Res. 78(2), 159–166 (2001)Google Scholar
  19. 19.
    J. Huang, M. Zhang, Dry. Technol. 34(8), 900–911 (2016)Google Scholar
  20. 20.
    Y. Zhu, B.-Q. Pu, G.-Y. Xie, M. Tian, F.-Y. Xu, M.-J. Qin, Molecules 19(7), 10440–10454 (2014)Google Scholar
  21. 21.
    Y. Chen, A. Martynenko, LWT-Food Sci. Technol. 87 470–477 (2018)Google Scholar
  22. 22.
    S.M. Jafari, D. Azizi, H. Mirzaei, D. Dehnad, J. Food Process. Preserv. 40(3), 362–372 (2016)Google Scholar
  23. 23.
    X. Jin, T. Oliviero, R. van der Sman, R. Verkerk, M. Dekker, A. van Boxtel, LWT-Food Sci. Technol. 59(1), 189–195 (2014)Google Scholar
  24. 24.
    M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, J. Food Eng. 188, 32–49 (2016)Google Scholar
  25. 25.
    X.-F. Shi, J.-Z. Chu, Y.-F. Zhang, C.-Q. Liu, X.-Q. Yao, Ind. Crops Prod. 104, 45–51 (2017)Google Scholar
  26. 26.
    N. Jiang, C. Liu, D. Li, Z. Zhang, C. Liu, D. Wang, L. Niu, M. Zhang, LWT-Food Sci. Technol. 82 216–226 (2017)Google Scholar
  27. 27.
    S. Uysal, G. Zengin, A. Aktumsek, S. Karatas, J. Funct. Foods. 22, 518–532 (2016)Google Scholar
  28. 28.
    S. Uysal, A. Ugurlu, G. Zengin, M.C. Baloglu, Y.C. Altunoglu, A. Mollica, L. Custodio, N.R. Neng, J.M. Nogueira, M.F. Mahomoodally, Food Chem. Toxicol. 111, 525–536 (2018)Google Scholar
  29. 29.
    G. Zengin, E.J. Llorent-Martínez, M.L. Fernández-de Córdova, M.B. Bahadori, A. Mocan, M. Locatelli, A. Aktumsek, Ind. Crops Prod. 111, 11–21 (2018)Google Scholar
  30. 30.
    M.J. Rahman, A.C. de Camargo, F. Shahidi, J. Funct. Foods. 35, 622–634 (2017)Google Scholar
  31. 31.
    M.B. Farhat, R. Chaouch-Hamada, J.A. Sotomayor, A. Landoulsi, M.J. Jordán, Ind. Crops Prod. 54, 78–85 (2014)Google Scholar
  32. 32.
    R.-L. Qin, C.-N. Lv, Y. Zhao, Y.-D. Zhao, Y. Yu, J.-C. Lu, Ind. Crops Prod. 107, 288–296 (2017)Google Scholar
  33. 33.
    J.C. Nunes, M.G. Lago, V.N. Castelo-Branco, F.R. Oliveira, A.G. Torres, D. Perrone, M. Monteiro, Food Chem. 197, 881–890 (2016)Google Scholar
  34. 34.
    M. Hossain, C. Barry-Ryan, A.B. Martin-Diana, N. Brunton, Food Chem. 123(1), 85–91 (2010)Google Scholar
  35. 35.
    D.S. Sogi, M. Siddiq, K.D. Dolan, LWT-Food Sci. Technol. 62(1), 564–568 (2015)Google Scholar
  36. 36.
    Y. Zhang, J.P. Smuts, E. Dodbiba, R. Rangarajan, J.C. Lang, D.W. Armstrong, J. Agric. Food Chem. 60(36), 9305–9314 (2012)Google Scholar
  37. 37.
    R. Bruni, G. Sacchetti, Molecules 14(2), 682–725 (2009)Google Scholar
  38. 38.
    H. Tanko, D.J. Carrier, L. Duan, E. Clausen, Plant Genet. Resour. 3(2), 304–313 (2005)Google Scholar
  39. 39.
    J. Samoticha, A. Wojdyło, K. Lech, LWT-Food Sci. Technol. 66, 484–489 (2016)Google Scholar
  40. 40.
    I. Quispe-Fuentes, A. Vega-Gálvez, M. Aranda, J. Sci. Food Agric. 98(11), 4168–4176 (2018)Google Scholar
  41. 41.
    A. Horszwald, H. Julien, W. Andlauer. Food Chem. 141(3), 2858–2863 (2013)Google Scholar
  42. 42.
    S.T. Ngo, M.S. Li, Mol. Simul. 39(4), 279–291 (2013)Google Scholar
  43. 43.
    A.Y. Sun, Q. Wang, A. Simonyi, G.Y. Sun, Neuromol. Med 10(4), 259–274 (2008)Google Scholar
  44. 44.
    F. Hiroyuki, Y. Tomohide, O. Kazunori, J. Nutr. Biochem. 12(6), 351–356 (2001)Google Scholar
  45. 45.
    M.C.N. Picot, O. Bender, A. Atalay, G. Zengin, L. Loffredo, F. Hadji-Minaglou, M.F. Mahomoodally, Biomed. Pharmacother. 89, 342–350 (2017)Google Scholar
  46. 46.
    M.C.N. Picot, M.F. Mahomoodally, Pharm. Biol. 55(1), 864–872 (2017)Google Scholar
  47. 47.
    M.T.H. Khan, Curr. Med. Chem. 19(14), 2262–2272 (2012)Google Scholar
  48. 48.
    W.V. Graham, A. Bonito-Oliva, T.P. Sakmar, Annu. Rev. Med. 68, 413–430 (2017)Google Scholar
  49. 49.
    U. Wehmeier, W. Piepersberg, Appl. Microbiol. Biotechnol. 63(6), 613–625 (2004)Google Scholar
  50. 50.
    N. Martins, I.C. Ferreira, in Food Bioactives, ed. by P. Munish (Springer, Cham, 2017), pp. 267–298Google Scholar
  51. 51.
    P. Pradeep, Y.N. Sreerama, Food Chem. 247, 46–55 (2018)Google Scholar
  52. 52.
    C. De Monte, B. Bizzarri, M.C. Gidaro, S. Carradori, A. Mollica, G. Luisi, A. Granese, S. Alcaro, G. Costa, N. Basilico, S. Parapini, M.M. Scaltrito, C. Masia, F. Sisto, J. Enzyme. Inhib. Med. Chem. 30(6), 1027–1033 (2015)Google Scholar
  53. 53.
    A.A. Zielinski, C.W. Haminiuk, C.A. Nunes, E. Schnitzler, S.M. Ruth, D. Granato, Compr. Rev. Food Sci. Food Saf. 13(3), 300–316 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Science FacultySelcuk UniversityKonyaTurkey

Personalised recommendations