Advertisement

A comparative study of three drying methods on the phenolic profile and biological activities of Salvia absconditiflora

  • Sengul Uysal
Original Paper
  • 5 Downloads

Abstract

Drying method is one of the most important steps in the preparation of plant materials for phytochemical analysis and biological evaluation. In this sense, this research endeavoured to evaluate the effects three drying methods (oven, freeze, and shade drying) on phytochemical component, antioxidant, and enzyme inhibitory effects of Salvia absconditiflora Greuter & Burdet. Antioxidant activities were screened by phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and metal chelating activity. Enzyme inhibitory effects were assessed against cholinesterases (AChE, BChE), tyrosinase, α-amylase, and α-glucosidase. Drying methods were found to affect the chemical component and biological properties. Shade drying showed the highest TPC (99.33 mgGAE/g) and TFC (46.88 mgRE/g) followed by oven (58.15 mgGAE/g for TPC, 40.65 for TFC), and freeze drying (43.73 mgGAE/g for TPC, 36.68 mgRE/g for TFC). The main phenolic compound characterized by HPLC was rosmarinic acid, which was observed to be highest following shade drying. Shade drying contained highest total bioactive compounds and exhibited the strongest antioxidant properties. The enzyme inhibitory effects of S. absconditiflora performed using different depends were dependent on the drying methods. Our results tend to suggest that shade drying was most suitable for S. absconditiflora because of possessing the highest rosmarinic acid and biological properties.

Keywords

Drying methods Rosmarinic acid Antioxidant Enzyme inhibitory effect 

References

  1. 1.
    N. Tan, S. Yazici-Tutunis, Y. Yesil, B. Demirci, E. Tan, Rec. Nat. Prod. 11, 456–461 (2017)CrossRefGoogle Scholar
  2. 2.
    J.B. Walker, K.J. Sytsma, J. Treutlein, M. Wink, Am. J. Bot. 91(7), 1115–1125 (2004)CrossRefPubMedCentralGoogle Scholar
  3. 3.
    G. Kamatou, N. Makunga, W. Ramogola, A. Viljoen, J. Ethnopharmacol. 119(3), 664–672 (2008)CrossRefPubMedCentralGoogle Scholar
  4. 4.
    G. Kamatou, R. Van Zyl, S. Van Vuuren, A. Figueiredo, J. Barroso, L. Pedro, A. Viljoen, S. Afr. J. Bot. 74(2), 230–237 (2008)CrossRefGoogle Scholar
  5. 5.
    M.R. Loizzo, M. Abouali, P. Salehi, A. Sonboli, M. Kanani, F. Menichini, R. Tundis, Nat. Prod. Res. 28(24), 2278–2285 (2014)CrossRefPubMedCentralGoogle Scholar
  6. 6.
    M. Mohammadhosseini, J Essent. Oil Bear. PL. 18(2), 464–476 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Xu, R. Wan, Y. Lin, L. Yang, Y. Chen, C. Liu, Asian J. Pharmacodyn. Pharmacokinet. 7(2), 99–130 (2007)Google Scholar
  8. 8.
    Y.-B. Wu, Z.-Y. Ni, Q.-W. Shi, M. Dong, H. Kiyota, Y.-C. Gu, B. Cong, Chem. Rev. 112(11), 5967–6026 (2012)CrossRefPubMedCentralGoogle Scholar
  9. 9.
    I. Cvetkovikj, G. Stefkov, J. Acevska, J.P. Stanoeva, M. Karapandzova, M. Stefova, A. Dimitrovska, S. Kulevanova, J. Chromatogr. A 1282, 38–45 (2013)CrossRefPubMedCentralGoogle Scholar
  10. 10.
    M.B. Bahadori, H. Valizadeh, B. Asghari, L. Dinparast, M.M. Farimani, S. Bahadori, J. Funct. Food 18, 727–736 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Salehi, A. Sonboli, M. Dayeni, F. Eftekhar, M. Yousefzadi, Chem. Nat. Compd. 44(1), 102–105 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Baytop, Türkiyede bitkiler ile tedavi (geçmişte ve bugün), 2nd edn. (İstanbul Üniversitesi, Istanbul, 1984), pp. 142–143Google Scholar
  13. 13.
    T. Baytop, Türkçe bitki adları sözlüğü, 2nd edn. (Turk Dil Kurumu, Ankara, 1994), pp. 20–21Google Scholar
  14. 14.
    G. Honda, E. Yeşilada, M. Tabata, E. Sezik, T. Fujita, Y. Takeda, Y. Takaishi, T. Tanaka, J. Ethnopharmacol. 53(2), 75–87 (1996)PubMedPubMedCentralGoogle Scholar
  15. 15.
    J. Yuan, L.-J. Hao, G. Wu, S. Wang, J. Duan, G.-Y. Xie, M.-J. Qin, J. Funct. Foods. 19 786–795 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, T. Liu, Y. Xue, C. Liu, H. Ru, M. Dong, Z. Yu, J. Food Process Eng. 39(2), 107–120 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Juyan, G. Yuehua, W. Junru, L. Yan, L. Zongsuo, Acta Bot. Boreal.-Occident. Sin. 26(10), 2044–2050 (2006)Google Scholar
  18. 18.
    Y. Soysal, S. Öztekin, J. Agric. Eng. Res. 78(2), 159–166 (2001)CrossRefGoogle Scholar
  19. 19.
    J. Huang, M. Zhang, Dry. Technol. 34(8), 900–911 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, B.-Q. Pu, G.-Y. Xie, M. Tian, F.-Y. Xu, M.-J. Qin, Molecules 19(7), 10440–10454 (2014)CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Y. Chen, A. Martynenko, LWT-Food Sci. Technol. 87 470–477 (2018)CrossRefGoogle Scholar
  22. 22.
    S.M. Jafari, D. Azizi, H. Mirzaei, D. Dehnad, J. Food Process. Preserv. 40(3), 362–372 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Jin, T. Oliviero, R. van der Sman, R. Verkerk, M. Dekker, A. van Boxtel, LWT-Food Sci. Technol. 59(1), 189–195 (2014)CrossRefGoogle Scholar
  24. 24.
    M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, J. Food Eng. 188, 32–49 (2016)CrossRefGoogle Scholar
  25. 25.
    X.-F. Shi, J.-Z. Chu, Y.-F. Zhang, C.-Q. Liu, X.-Q. Yao, Ind. Crops Prod. 104, 45–51 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Jiang, C. Liu, D. Li, Z. Zhang, C. Liu, D. Wang, L. Niu, M. Zhang, LWT-Food Sci. Technol. 82 216–226 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Uysal, G. Zengin, A. Aktumsek, S. Karatas, J. Funct. Foods. 22, 518–532 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Uysal, A. Ugurlu, G. Zengin, M.C. Baloglu, Y.C. Altunoglu, A. Mollica, L. Custodio, N.R. Neng, J.M. Nogueira, M.F. Mahomoodally, Food Chem. Toxicol. 111, 525–536 (2018)CrossRefPubMedCentralGoogle Scholar
  29. 29.
    G. Zengin, E.J. Llorent-Martínez, M.L. Fernández-de Córdova, M.B. Bahadori, A. Mocan, M. Locatelli, A. Aktumsek, Ind. Crops Prod. 111, 11–21 (2018)CrossRefGoogle Scholar
  30. 30.
    M.J. Rahman, A.C. de Camargo, F. Shahidi, J. Funct. Foods. 35, 622–634 (2017)CrossRefGoogle Scholar
  31. 31.
    M.B. Farhat, R. Chaouch-Hamada, J.A. Sotomayor, A. Landoulsi, M.J. Jordán, Ind. Crops Prod. 54, 78–85 (2014)CrossRefGoogle Scholar
  32. 32.
    R.-L. Qin, C.-N. Lv, Y. Zhao, Y.-D. Zhao, Y. Yu, J.-C. Lu, Ind. Crops Prod. 107, 288–296 (2017)CrossRefGoogle Scholar
  33. 33.
    J.C. Nunes, M.G. Lago, V.N. Castelo-Branco, F.R. Oliveira, A.G. Torres, D. Perrone, M. Monteiro, Food Chem. 197, 881–890 (2016)CrossRefPubMedCentralGoogle Scholar
  34. 34.
    M. Hossain, C. Barry-Ryan, A.B. Martin-Diana, N. Brunton, Food Chem. 123(1), 85–91 (2010)CrossRefGoogle Scholar
  35. 35.
    D.S. Sogi, M. Siddiq, K.D. Dolan, LWT-Food Sci. Technol. 62(1), 564–568 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, J.P. Smuts, E. Dodbiba, R. Rangarajan, J.C. Lang, D.W. Armstrong, J. Agric. Food Chem. 60(36), 9305–9314 (2012)CrossRefPubMedCentralGoogle Scholar
  37. 37.
    R. Bruni, G. Sacchetti, Molecules 14(2), 682–725 (2009)CrossRefPubMedCentralGoogle Scholar
  38. 38.
    H. Tanko, D.J. Carrier, L. Duan, E. Clausen, Plant Genet. Resour. 3(2), 304–313 (2005)CrossRefGoogle Scholar
  39. 39.
    J. Samoticha, A. Wojdyło, K. Lech, LWT-Food Sci. Technol. 66, 484–489 (2016)CrossRefGoogle Scholar
  40. 40.
    I. Quispe-Fuentes, A. Vega-Gálvez, M. Aranda, J. Sci. Food Agric. 98(11), 4168–4176 (2018)CrossRefPubMedCentralGoogle Scholar
  41. 41.
    A. Horszwald, H. Julien, W. Andlauer. Food Chem. 141(3), 2858–2863 (2013)CrossRefPubMedCentralGoogle Scholar
  42. 42.
    S.T. Ngo, M.S. Li, Mol. Simul. 39(4), 279–291 (2013)CrossRefGoogle Scholar
  43. 43.
    A.Y. Sun, Q. Wang, A. Simonyi, G.Y. Sun, Neuromol. Med 10(4), 259–274 (2008)CrossRefGoogle Scholar
  44. 44.
    F. Hiroyuki, Y. Tomohide, O. Kazunori, J. Nutr. Biochem. 12(6), 351–356 (2001)CrossRefPubMedCentralGoogle Scholar
  45. 45.
    M.C.N. Picot, O. Bender, A. Atalay, G. Zengin, L. Loffredo, F. Hadji-Minaglou, M.F. Mahomoodally, Biomed. Pharmacother. 89, 342–350 (2017)CrossRefPubMedCentralGoogle Scholar
  46. 46.
    M.C.N. Picot, M.F. Mahomoodally, Pharm. Biol. 55(1), 864–872 (2017)CrossRefPubMedCentralGoogle Scholar
  47. 47.
    M.T.H. Khan, Curr. Med. Chem. 19(14), 2262–2272 (2012)CrossRefPubMedCentralGoogle Scholar
  48. 48.
    W.V. Graham, A. Bonito-Oliva, T.P. Sakmar, Annu. Rev. Med. 68, 413–430 (2017)CrossRefPubMedCentralGoogle Scholar
  49. 49.
    U. Wehmeier, W. Piepersberg, Appl. Microbiol. Biotechnol. 63(6), 613–625 (2004)CrossRefPubMedCentralGoogle Scholar
  50. 50.
    N. Martins, I.C. Ferreira, in Food Bioactives, ed. by P. Munish (Springer, Cham, 2017), pp. 267–298Google Scholar
  51. 51.
    P. Pradeep, Y.N. Sreerama, Food Chem. 247, 46–55 (2018)CrossRefPubMedCentralGoogle Scholar
  52. 52.
    C. De Monte, B. Bizzarri, M.C. Gidaro, S. Carradori, A. Mollica, G. Luisi, A. Granese, S. Alcaro, G. Costa, N. Basilico, S. Parapini, M.M. Scaltrito, C. Masia, F. Sisto, J. Enzyme. Inhib. Med. Chem. 30(6), 1027–1033 (2015)CrossRefPubMedCentralGoogle Scholar
  53. 53.
    A.A. Zielinski, C.W. Haminiuk, C.A. Nunes, E. Schnitzler, S.M. Ruth, D. Granato, Compr. Rev. Food Sci. Food Saf. 13(3), 300–316 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Science FacultySelcuk UniversityKonyaTurkey

Personalised recommendations