An attempt to cast light into lutein extraction and its alkali optimization

  • Mehdi Jalali Jivan
  • Soleiman AbbasiEmail author
Original Paper


The present study deals with optimization of alkali treatment including KOH concentration (20, 30, 40 and 50% w/v), treatment time (0, 10, 20, 40, 60 and 120 min) and temperature (30, 50, 70 and 90 °C) in order to eliminate the green pigments (chlorophyll residues) of lutein acetone extract from spinach. Based on spectrophotometric and RP-HPLC-PDA analyses, alkali treatment (KOH 30% w/v) at 50 °C for 40 min with 4:1 mass ratio (extract: alkali solution) were the optimum conditions to eliminate chlorophyll residues of spinach leaf powder (extracted with acetone for 12 h). As a result, the lutein content of the alkali treated extract was measurable (1.85 mg/g dry weight basis), whereas its quantification was unlikely due to the interferences of green and orange pigments. Regarding the lutein content of marigold petals (14.48 mg/g dry weight basis) extracted by acetone for 6 h, it was noticed that heat treatment alone (50 °C for 40 min without KOH) was ineffective, while by combination of alkali and temperature (KOH 30% w/v, for 40 min at 25, 50 or 70 °C) the lutein content was significantly (p < 0.05) decreased. Moreover, the HPLC quantification of alkalized spinach acetone extract showed an increase (up to 33%) compared to rudiment specimen. Apart from lutein, some other carotenoids (i.e., neoxanthin, violaxanthin, zeaxanthin and β-carotene) were also identified and quantified.


Lutein Spinach Marigold Alkali treatment Spectrophotometry HPLC 



Authors would like to thank Ardabil municipality for providing marigold flower (Tagetes erecta) and Dr Hassan Ahmadi Ghavligi for his assistance on HPLC analysis.


  1. 1.
    A.R.-B. de Quirós, H.S. Costa, J. Food Compost. Anal. 19, 97 (2006)CrossRefGoogle Scholar
  2. 2.
    H. Van den Berg, R. Faulks, H.F. Granado, J. Hirschberg, B. Olmedilla, G. Sandmann, S. Southon, W. Stahl, J. Sci. Food Agric. 80, 880 (2000)CrossRefGoogle Scholar
  3. 3.
    C. Yang, M. Fischer, C. Kirby, R. Liu, H. Zhu, H. Zhang, Y. Chen, Y. Sun, L. Zhang, R. Tsao, Food Chem. 249, 66 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Ma, H.-L. Dou, Y.-Q. Wu, Y.-M. Huang, Y.-B. Huang, X.-R. Xu, Z.-Y. Zou, X.-M. Lin, Br. J. Nutr. 107, 350 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Vishwanathan, M. Neuringer, D.M. Snodderly, W. Schalch, E.J. Johnson, Nutr. Neurosci. 16, 21 (2013)CrossRefGoogle Scholar
  6. 6.
    R.A. Bone, J.T. Landrum, Z. Dixon, Y. Chen, C.M. Llerena, Exp. Eye Res. 71, 239 (2000)CrossRefGoogle Scholar
  7. 7.
    B.D. Gill, H.E. Indyk, Int. Dairy J. 18, 894 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Bohn, C. Desmarchelier, L.O. Dragsted, C.S. Nielsen, W. Stahl, R. Rühl, J. Keijer, P. Borel, Mol. Nutr. Food Res. 61, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Grudzinski, M. Piet, R. Luchowski, E. Reszczynska, R. Welc, R. Paduch, W.I. Gruszecki, Spectrochim. Acta A 188, 57 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Khalil, J. Raila, M. Ali, K.M.S. Islam, R. Schenk, J.-P. Krause, F.J. Schweigert, H. Rawel, J. Funct. Foods 4, 602 (2012)CrossRefGoogle Scholar
  11. 11.
    J.A. Del Campo, M. García-González, M.G. Guerrero, Appl. Microbiol. Biotechnol. 74, 1163 (2007)CrossRefGoogle Scholar
  12. 12.
    G.P. De Oliveira, D.B. Rodriguez-Amaya, J. Food Sci. 72, S079 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Simonovska, I. Vovk, V. Glavnik, K. Černelič, J. Chromatogr. A 1276, 95 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, X. Liu, H. Xu, J. Zhao, Q. Wang, G. Liu, Q. Hao, Sep. Purif. Technol. 71, 214 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Perry, H. Rasmussen, E.J. Johnson, J. Food Compost. Anal. 22, 9 (2009)CrossRefGoogle Scholar
  16. 16.
    I.D. Nwachukwu, C.C. Udenigwe, R.E. Aluko, Trends Food Sci. Technol. 49, 74 (2016)CrossRefGoogle Scholar
  17. 17.
    M.V. Álvarez, S. Hincapié, N. Saavedra, L.M. Alzate, A.M. Muñoz, C.J. Cartagena, J. Londoño-Londoño, Phytochem. Rev. 14, 891 (2015)CrossRefGoogle Scholar
  18. 18.
    M.M. Calvo, Crit. Rev. Food Sci. Nutr. 45, 671 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Bhattacharyya, S. Datta, B. Mallick, P. Dhar, S. Ghosh, J. Agric. Food Chem. 58, 8259 (2010)CrossRefGoogle Scholar
  20. 20.
    J.H. Lin, D.J. Lee, J.S. Chang, J. Taiwan Inst. Chem. Eng. 49, 90 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Fratianni, R. Mignogna, S. Niro, G. Panfili, J. Food Sci. 80, C2686 (2015)CrossRefGoogle Scholar
  22. 22.
    J.H. Kang, S. Kim, B. Moon, Food Chem. 205, 140 (2016)CrossRefGoogle Scholar
  23. 23.
    M.N. Irakli, V.F. Samanidou, I.N. Papadoyannis, J. Sep. Sci. 34, 1375 (2011)CrossRefGoogle Scholar
  24. 24.
    P. Divya, B. Puthusseri, B. Neelwarne, Food Res. Int. 45, 342 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Watanabe, K. Musumi, J. Ayugase, LWT-Food Sci. Technol. 44, 1971 (2011)CrossRefGoogle Scholar
  26. 26.
    M.C. Chan, S.H. Ho, D.J. Lee, C.Y. Chen, C.C. Huang, J.S. Chang, Biochem. Eng. J. 78, 24 (2013)CrossRefGoogle Scholar
  27. 27.
    D.B. Rodriguez-Amaya, A Guide to Carotenoid Analysis in Foods (ILSI press, Washington, 2001), pp. 10–43Google Scholar
  28. 28.
    W.W. Fish, P. Perkins-Veazie, J.K. Collins, J. Food Compost. Anal. 15, 309 (2002)CrossRefGoogle Scholar
  29. 29.
    N.E. Craft, J.H. Soares, J. Agric. Food Chem. 40, 431 (1992)CrossRefGoogle Scholar
  30. 30.
    A. Bunea, M. Andjelkovic, C. Socaciu, O. Bobis, M. Neacsu, R. Verhé, J.V. Camp, Food Chem. 108, 649 (2008)CrossRefGoogle Scholar
  31. 31.
    M. Kimura, D.B. Rodriguez-Amaya, Food chem. 78, 389 (2002)CrossRefGoogle Scholar
  32. 32.
    H.K. Lichtenthaler, Methods Enzymol. 148, 350 (1987)CrossRefGoogle Scholar
  33. 33.
    H.K. Lichtenthaler, C. Buschmann, CPFAC 1, F4.3.1 (2001)Google Scholar
  34. 34.
    F. Mattea, Á Martín, M.J. Cocero, J. Food Eng. 93, 255 (2009)CrossRefGoogle Scholar
  35. 35.
    D.B. Rodriguez-Amaya, M. Kimura, HarvestPlus Handbook for Carotenoid Analysis (IFPRI, Washington, 2004), pp. 4–9Google Scholar
  36. 36.
    E. Murillo, A.J. Meléndez-Martínez, F. Portugal, Food Chem. 122, 167 (2010)CrossRefGoogle Scholar
  37. 37.
    A.A. Updike, S.J. Schwartz, J. Agric. Food Chem. 51, 6184 (2003)CrossRefGoogle Scholar
  38. 38.
    F. Khachik, G.R. Beecher, N.F. Whittaker, J. Agric. Food Chem. 34, 603 (1986)CrossRefGoogle Scholar
  39. 39.
    H.M. Rasmussen, T. Muzhingi, E.M. Eggert, E.J. Johnson, J. Food Compost. Anal. 27, 139 (2012)CrossRefGoogle Scholar
  40. 40.
    E.J. Johnson, M. Neuringer, R.M. Russell, W. Schalch, D.M. Snodderly, Invest. Ophthalmol. Vis. Sci. 46, 692 (2005)CrossRefGoogle Scholar
  41. 41.
    K.J. Scott, CPFAC 00, F2.2.1 (2001)Google Scholar
  42. 42.
    P.Y. Niizu, D.B. Rodriguez-Amaya, J. Food Compost. Anal. 18, 739 (2005)CrossRefGoogle Scholar
  43. 43.
    C.H. de Azevedo-Meleiro, D.B. Rodriguez-Amaya, J. Food Compost. Anal. 18, 845 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Food Colloids and Rheology Laboratory, Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran

Personalised recommendations