Journal of Food Measurement and Characterization

, Volume 12, Issue 4, pp 2844–2854 | Cite as

Ultrasonic-assisted extraction of squalene and vitamin E based oil from Zizyphi Spinosae Semen and evaluation of its antioxidant activity

  • Sa Xiao
  • Yanqing Zhang
  • Junbo XieEmail author
  • Zhiyou WenEmail author
Original Paper


Zizyphi Spinosae Semen (ZSS) is an herbal medicine with a variety of biological activities. In this study, the oil fraction of ZSS was extracted using an ultrasonic assisted extraction (UAE) method and the value of this underutilized byproduct was explored. The effects of operational parameters of the UAE process (extraction temperature, extraction time, liquid-to-solid ration, and ultrasonic power) on the extraction efficiency were evaluated based on the yield of vitamin E and the squalene, two important compounds in ZSS oil with antioxidant bioactivities. A central composite design was used to optimize these operational parameters. The optimized UAE process resulted in a vitamin E yield of 29.58 ± 0.19 mg/100 g ZSS and a squalene yield of 820.49 ± 3.66 µg/100 g ZSS, which were much higher than those obtained through the conventional heating reflux extraction (HRE) (i.e., vitamin E yield of 18.67 mg/100 g ZSS, and squalene yield of 627.25 µg/100 g ZSS). The ZSS oil contained oleic acid and linoleic acid as the main fatty acid. In addition, the UAE-derived ZSS oil exhibited stronger activities of scavenging ABTs, superoxide anions and hydroxyl radicals, compared to the ZSS oil extracted from HRE. Collectively, this work demonstrated that UAE was an effective method to extract ZSS oil with high yield. The ZSS oil can be used as a potential an antioxidant agent in food and pharmaceutical industries.


Zizyphi Spinosae Semen Vitamin E Squalene Response surface method Anti-oxidant 



This work was supported by the National Natural Science Foundation of China (Grant No. 31101235; No. 31000749) and “131” first level innovative talents training project in Tianjin.

Compliance with ethical standards

Conflict of interest

All authors have no financial or scientific conflict of interest with regard to the research described in this manuscript.


  1. 1.
    Y.F. Sun, Z.S. Liang, C.J. Shan, H. Viernstein, F. Unger, Comprehensive evaluation of natural antioxidants and antioxidant potentials in Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou, fruits based on geographical origin by TOPSIS method. Food Chem. 124(4), 1612–1619 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Yang, A.H. Zhang, H. Sun, W. Dong, G.L. Yan, T.L. Li, X.J. Wang, Metabolomic study of insomnia and intervention effects of Suanzaoren decoction using ultra-performance liquid-chromatography/electrospray-ionization synapt high-definition mass spectrometry. J. Pharm. Biomed. 58, 113–124 (2012)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Zhang, L.D. Qiao, M.Y. Song, L.J. Wang, J.B. Xie, H. Feng, HPLC-ESI- MS/MS analysis of the water-soluble extract from Ziziphi spinosae semen and its ameliorating effect of learning and memory performance in mice. Pharmacogn. Mag. 10(40), 509–516 (2014)CrossRefGoogle Scholar
  4. 4.
    X.X. Wang, G.I. Ma, J.B. Xie, G.C. Pang, Influence of JuA in evoking communication changes between the small intestines and brain tissues of rats and the GABA(A) and GABA(B) receptor transcription levels of hippocampal neurons. J. Ethnopharmacol. 159, 215–223 (2015)CrossRefGoogle Scholar
  5. 5.
    S.W. Lee, D.H. Kim, J.H. Yun, J.W. Kim, E.Y. Jung, S.G. Lee, K.S. Lee, T.H. Kim, Y.S. Lyu, H.W. Kang, The effects of antioxidant and anti-Alzheimer on hydrogen peroxide and β-amyloid peptid-induced PC 12 cells by Semen Ziziphi Spinosae water extract. Korean Soc. Orient. Neuropsychiatry 19(3), 179–194 (2008)Google Scholar
  6. 6.
    W.Y. Lee, G.H. Jeong, Combination tendency analysis on herbal formula to treat insomnia focused on Zizyphi spinosi Semen. J. Herb. Formula Sci. 22(1), 33–45 (2014)CrossRefGoogle Scholar
  7. 7.
    J.B. Xie, Y.Q. Zhang, L.J. Wang, W.Q. Qi, M.C. Zhang, Composition of fatty oils from semen Ziziphi spinosae and its cardiotonic effect on isolated toad hearts. Nat. Prod. Res. 26(5), 479–483 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Perdomo, N. Beneit, Y.F. Otero, O. Escribano, S. Diaz-Castroverde, A. Gomez-Hernandez, M. Benito, Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    G. Muzio, M. Miola, S. Ferraris, M. Maggiora, E. Bertone, M.P. Puccinelli, M. Ricci, E. Borroni, R.A. Canuto, E. Vern, A. Follenzi, Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid: effect on tumor cell growth and viability. Mat. Sci. Eng. C-Mater. 76, 439–447 (2017)CrossRefGoogle Scholar
  10. 10.
    N. Terasawal, K. Okamoto, K. Nakada, K. Masuda, Effect of conjugated linoleic acid intake on endurance exercise performance and anti-fatigue in student athletes. J. Oleo Sci. 66(7), 723–733 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Barone, C. Sangiorgi, A.M. Gammazza, D. D’Amico, M. Salerno, F. Cappello, C. Pomara, G. Zummo, F. Farina, V. Di Felice, F. Macaluso, Effects of conjugated linoleic acid associated with endurance exercise on muscle fibres and peroxisome proliferator-activated receptor gamma coactivator 1 alpha isoforms. J. Cell. Physiol. 232(5), 1086–1094 (2017)CrossRefGoogle Scholar
  12. 12.
    F. Wang, X.S. Liu, Y. Chen, L.H. Wang, Characterization of fatty oil of Zizyphi spinosi semen, obtained by supercritical fluid extraction. J. Am. Oil Chem. Soc. 88(4), 467–472 (2011)CrossRefGoogle Scholar
  13. 13.
    Q. Liu, Y.F. Zhou, R.J. Duan, H.K. Wei, S.W. Jiang, J. Peng, Lower dietary n-6: n-3 ratio and high-dose vitamin E supplementation improve sperm morphology and oxidative stress in boars. Reprod. Fertil. Develop. 29(5), 940–949 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, W.T. Song, Y.C. Sun, A.S. Shan, Effects of phoxim-induced hepatotoxicity on SD rats and the protection of vitamin E. Environ. Sci. Pollut. Res. 24(32), 24916–24927 (2017)CrossRefGoogle Scholar
  15. 15.
    S.R. Kumar, B. Narayan, Y. Sawada, M. Hosokawa, K. Miyashita, Combined effect of astaxanthin and squalene on oxidative stress in vivo. Mol. Cell. Biochem. 417(1–2), 57–65 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Senthilkumar, S.K. Yogeeta, R. Subashini, T. Devaki, Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem. Biol. Interact. 160(3), 252–260 (2006)CrossRefGoogle Scholar
  17. 17.
    L. De-bo, Study on preparation of Zanthoxylum bungeanum seed oil. China West Cereals Oils Technol. 24, 22–23 (1999)Google Scholar
  18. 18.
    M.O. Akusu, S.C. Achinewhu, J. Mitchell, Quality attributes and storage stability of locally and mechanically extracted crude palm oils in selected communities in Rivers and Bayelsa States, Nigeria. Plant Food Hum. Nutr. 55(2), 119–126 (2000)CrossRefGoogle Scholar
  19. 19.
    N. Bayar, T. Bouallegue, M. Achour, M. Kriaa, A. Bougatef, R. Kammoun, Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem. 235, 275–282 (2017)CrossRefGoogle Scholar
  20. 20.
    K.H. Wong, G.Q. Li, K.M. Li, V. Razmovski-Naumovski, K. Chan, Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem. 231, 231–237 (2017)CrossRefGoogle Scholar
  21. 21.
    W.A. Jensen, Response surface methodology: process and product optimization using designed experiments. J. Qual. Technol. 49(2), 186–187 (2017)CrossRefGoogle Scholar
  22. 22.
    D.B. White, H.K. Slocum, Y. Brun, C. Wrzosek, W.R. Greco, A new nonlinear mixture response surface paradigm for the study of synergism: a three drug example. Curr. Drug Metab. 4(5), 399–409 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Yu, C. Wang, S.T. Deng, Y.G. Bi, Optimization of ultrasonic-assisted extraction and UPLC-TOF/MS analysis of limonoids from lemon seed. LWT Food Sci. Technol. 84, 135–142 (2017)CrossRefGoogle Scholar
  24. 24.
    F.J. Barba, M.J. Esteve, A. Frígola, Determination of vitamins E (α-, γ- and δ-tocopherol) and D (cholecalciferol and ergocalciferol) by liquid chromatography in milk, fruit juice and vegetable beverage. Eur. Food Res. Technol. 232(5), 829–836 (2011)CrossRefGoogle Scholar
  25. 25.
    J.D. Zhang, Y.Q. Wang, F. Qiu, L. Deng, B. Zhao, Research on determination of unsaponifiable matter in animal fats and vegetable oils. Cereals Oils 11, 33–35 (2011)Google Scholar
  26. 26.
    H.T. Lu, Y. Jiang, F. Chen, Determination of squalene using high-performance liquid chromatography with diode array detection. Chromatographia 59(5–6), 367–371 (2004)Google Scholar
  27. 27.
    B. Yang, H.S. Yang, F. Chen, Y.L. Hua, Y.M. Jiang, Phytochemical analyses of Ziziphus jujuba Mill. var. spinosa seed by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Analyst 138(22), 6881–6888 (2013)CrossRefGoogle Scholar
  28. 28.
    A.C. de Camargo, M.A.B. Regitano-d’Arce, G.B. Rasera, S.G. Canniatti-Brazaca, L. do Prado-Silva, V.O. Alvarenga, A.S. Sant’Ana, F. Shahidi, Phenolic acids and flavonoids of peanut by-products: antioxidant capacity and antimicrobial effects. Food Chem. 237, 538–544 (2017)CrossRefGoogle Scholar
  29. 29.
    L.L. Shao, J. Xu, M.J. Shi, X.L. Wang, Y.T. Li, L.M. Kong, R.C. Hider, T. Zhou, Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chem. 237, 481–487 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Nishizaki, H. Iwahashi, Baicalin inhibits the Fenton reaction by enhancing electron transfer from Fe2+ to dissolved oxygen. Am. J. Chin. Med. 43(1), 87–101 (2015)CrossRefGoogle Scholar
  31. 31.
    L.J. You, M.M. Zhao, J.M. Regenstein, J.Y. Ren, In vitro, antioxidant activity and in vivo, anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chem. 124(1), 188–194 (2011)CrossRefGoogle Scholar
  32. 32.
    A.A. Jovanovic, V.B. Dordevic, G.M. Zdunic, D.S. Pljevljakusic, K.P. Savikin, D.M. Godevac, B.M. Bugarski, Optimization of the extraction process of polyphenols from Thymus serpyllum, L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 179, 369–380 (2017)CrossRefGoogle Scholar
  33. 33.
    O. Secmeler, O.G. Ustundag, Behavior of lipophilic bioactives during olive oil processing. Eur J. Lipid Sci. Technol. (2017). CrossRefGoogle Scholar
  34. 34.
    Y. Xu, S.Y. Pan, Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrason. Sonochem. 20(4), 1026–1032 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Parellada, C. Llorente, R. Calvo, S. Gutierrez, L. Lazaro, M. Graell, M. Guisasola, M.L. Dorado, L. Boada, J. Romo, E. Dulin, I. Sanz, C. Arango, C. Moreno, Randomized trial of omega-3 for autism spectrum disorders: effect on cell membrane composition and behavior. Eur. Neuropsychopharm. 27(12), 1319–1330 (2017)CrossRefGoogle Scholar
  36. 36.
    R. Tripathi, H. Mohan, J.P. Kamat, Modulation of oxidative damage by natural products. Food Chem. 100(1), 81–90 (2007)CrossRefGoogle Scholar
  37. 37.
    Y.H. Sun, R.L. Ma, S.J. Wang, G.Y. Li, Y.J. Sheng, H.Y. Rui, J. Zhang, J.C. Xu, D. Jiang, New cofactors and inhibitors for a DNA-cleaving DNAzyme: superoxide anion and hydrogen peroxide mediated an oxidative cleavage process. Sci Rep-UK. (2017). CrossRefGoogle Scholar
  38. 38.
    C. Saporito-Magrina, R. Musacco-Sebio, J.M. Acosta, S. Bajicoff, P. Paredes-Fleitas, S. Reynoso, A. Boveris, M.G. Repetto, Copper(II) and iron(III) ions inhibit respiration and increase free-radical mediated phospholipid peroxidation in rat liver mitochondria: effect of antioxidants. J. Inorg. Biochem. 172, 94–99 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Ramkumar, G. Balasubramani, R.K. Raja, M. Raja, R. Govindan, E.K. Girija, P. Perumal, Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. Artif. Cell Nanomed. B 45(4), 748–757 (2017)CrossRefGoogle Scholar
  40. 40.
    X.J. LI, S.Y. Cui, DPPH radical scavenging mechanism of ascorbic acid. Food Sci. 32(1), 86–90 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Biotechnology and Food ScienceTianjin University of CommerceTianjinChina
  2. 2.Tianjin Key Laboratory of Food BiotechnologyTianjinChina
  3. 3.Food Science and Human NutritionIowa State UniversityAmesUSA

Personalised recommendations