Advertisement

Investigation of water adsorption and thermodynamic properties of stevia powder

  • Nadia Hidar
  • Mourad Ouhammou
  • Ali Idlimam
  • Abderrahim Jaouad
  • Mohamed Bouchdoug
  • Abdelkader Lamharrar
  • Mohammed Kouhila
  • Mostafa Mahrouz
Original Paper
  • 54 Downloads

Abstract

Stevia rebaudiana is a natural non-caloric substitute to conventional sugar. Moisture adsorption isotherms of stevia powder, a sweet plant, were investigated at three different temperatures (30, 40 and 50 °C) using a gravimetric technique. The sorption isotherms were found to be typical type II sigmoid with the sorption capacity decreasing with increasing temperature. Experimental data were fitted using GAB model, the monolayer moisture content tended to decrease as temperature increased. Moreover, these experimental data curves allow us to calculate the value of the optimal water activity for the conservation and to determine the surface area of powder studied. The isosteric heat of sorption, sorption entropy and spreading pressure were determined as a function of moisture content. The net isosteric heat of adsorption and differential entropy decreased with increasing moisture contents. A plot of differential heat versus entropy satisfied the enthalpy–entropy compensation theory. The spreading pressures increased with increasing water activity but decreased with increasing temperature.

Keywords

Adsorption isotherms GAB equation modelling Stevia powder Surface area Thermodynamic properties Water activity 

List of symbols

EMC

Xeq equilibrium moisture content (% d.b)

Am

Area of a water molecule (1.06 × 10−19 m2)

NA

Avogadro’s number (6 × 1026 molecules mol−1)

KB

Boltzmann constant (1.38 × 10−23 J K−1)

MRE

Mean relative error (%)

\({\text{Xe}}{{\text{q}}_{{\text{i,exp}}}}\)

Experimental equilibrium moisture content (% d.b)

\({\text{Xe}}{{\text{q}}_{{\text{i,pred}}}}\)

Predicted equilibrium moisture content (% d.b)

GAB

Guggenheim Anderson de Boer

Xm

Monolayer moisture content

P0

Vapour pressure of pure water at the same temperature (atm)

\(\Delta {H_d}\)

Isosteric heat of sorption (kJ mol−1)

\({\Delta}{{\text{h}}_{\text{d}}}\)

Net isosteric heat of sorption (kJ mol−1)

\({\Delta}{{\text{S}}_{\text{d}}}\)

Entropy of sorption (J mol−1 K−1)

R

Universal gas constant (8.3145 J mol−1 K−1)

\({\Delta}{{\text{G}}}_{{\upbeta}}\)

Free enthalpy at the isokinetic temperature (J mol−1)

Mf

Mass of dry matter (g)

Mi

Mass of wet matter (g)

aw

Water activity

\(\theta\)

Temperature (°C)

d.b

Dry weight basis

R2

Coefficient of determination

N

Number of data points

\({{\text{T}}_{\upbeta}}\)

Isokinetic temperature (K)

Eq

Equation

Ads

Adsorption

P

Partial pressure of water in the food (atm)

Ei

Residual of estimate

Thm

Harmonic temperature (K)

φ

Spreading pressure (J m−2)

\({a_{wop}}\)

Water activity optimal

C, K, Xm

GAB model coefficients

Notes

Acknowledgements

The authors would like to acknowledge the Ministry of Higher Education, Scientific Research and Professional training of Morocco- Rabat, Priority Research Program (PPR –B –Mahrouz –FS –UCA – Marrakech) and we thank Mr Omar EL HROD from MOGADOR Cooperative (ESSAOUIRA, Morocco) for his assistance in obtaining the sample during this study.

References

  1. 1.
    S. Singh, V. Garg, D. Yadav, N. Sharma, In-vitro antioxidative and antibacterial activities of various parts of Stevia rebaudiana (Bertoni). Int. J. Pharm. Pharm. Sci. 4, 468–473 (2012)Google Scholar
  2. 2.
    D. Midmore, A. Rank, A new rural industry—Stevia—to replace imported chemical sweeteners. In: Rural Industries Research and Development Corporation, pp. 1–55 (2002)Google Scholar
  3. 3.
    J.M.C. Geuns, P. Augustijns, R. Mols, J.G. Buyse, B. Driessen, Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol. Food Chem. Toxicol. 41, 1599–1607 (2003).  https://doi.org/10.1016/S0278-6915(03)00191-1 CrossRefGoogle Scholar
  4. 4.
    J.M.C. Geuns, R.D. Malheiros, V.M.B. Moraes, E.M.P. Decuypere, F. Compernolle, J.G. Buyse, Metabolism of stevioside by chickens. J. Agric. Food Chem. 51, 1095–1101 (2003).  https://doi.org/10.1021/jf020835o CrossRefGoogle Scholar
  5. 5.
    A. Aboudrare, Une nouvelle plante sucrée au Maroc. Stevia rebaudiana, PNTTA. Transf. Technol. Agric. 174, 1–6 (2009)Google Scholar
  6. 6.
    M.A. Al-Mahasneh, T.M. Rababah, W. Yang, Moisture sorption thermodynamics of defatted sesame meal (DSM). J. Food Eng. 81, 735–740 (2007).  https://doi.org/10.1016/j.jfoodeng.2007.01.010 CrossRefGoogle Scholar
  7. 7.
    B. Polatoǧlu, A.V. Beşe, M. Kaya, N. Aktaş, Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food Bioprod. Process. 89, 449–456 (2011).  https://doi.org/10.1016/j.fbp.2010.06.003 CrossRefGoogle Scholar
  8. 8.
    R. Lemus-Mondaca, A. Vega-Galvez, N.O. Moraga, S. Astudillo, Dehydration of Stevia rebaudiana Bertoni leaves: kinetics, modeling and energy features. J. Food Process. Preserv. 39, 508–520 (2015).  https://doi.org/10.1111/jfpp.12256 CrossRefGoogle Scholar
  9. 9.
    G.N. Rao, P.P. Rao, K. Balaswamy, A. Satyanarayana, Antioxidant activity of Stevia (Stevia rebaudiana L.) leaf powder and a commercial stevioside powder. J. Food Pharm. Sci. 2, 32–38 (2014)Google Scholar
  10. 10.
    A.J. Kumar, R.R.B. Singh, G.R. Patil, A.A. Patel, Effect of temperature on moisture desorption isotherms of kheer. LWT Food Sci. Technol. 38, 303–310 (2005).  https://doi.org/10.1016/j.lwt.2003.10.009 CrossRefGoogle Scholar
  11. 11.
    W.A.M. McMinn, A.H. Al-Muhtaseb, T.R.A. Magee, Enthalpy-entropy compensation in sorption phenomena of starch materials. Food Res. Int. 38, 505–510 (2005).  https://doi.org/10.1016/j.foodres.2004.11.004 CrossRefGoogle Scholar
  12. 12.
    O.O. Fasina, Thermodynamic properties of sweetpotato. J. Food Eng. 75, 149–155 (2006).  https://doi.org/10.1016/j.jfoodeng.2005.04.004 CrossRefGoogle Scholar
  13. 13.
    L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A 81A, 89 (1977).  https://doi.org/10.6028/jres.081A.011 CrossRefGoogle Scholar
  14. 14.
    P. Yogendrarajah, S. Samapundo, F. Devlieghere, S. De Saeger, B. De Meulenaer, Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT Food Sci. Technol. 64, 177–188 (2015).  https://doi.org/10.1016/j.lwt.2015.05.045 CrossRefGoogle Scholar
  15. 15.
    S. Yanniotis, J. Blahovec, Model analysis of sorption isotherms. LWT Food Sci. Technol. 42, 1688–1695 (2009).  https://doi.org/10.1016/j.lwt.2009.05.010 CrossRefGoogle Scholar
  16. 16.
    A.E. Delgado, D.W. Sun, Desorption isotherms for cooked and cured beef and pork. J. Food Eng. 51, 163–170 (2002).  https://doi.org/10.1016/S0260-8774(01)00053-X CrossRefGoogle Scholar
  17. 17.
    H. Yan, B. Cai, Y. Cheng, G. Guo, D. Li, X. Yao, X. Ni, G.O. Phillips, Y. Fang, F. Jiang, Mechanism of lowering water activity of konjac glucomannan and its derivatives. Food Hydrocoll. 26, 383–388 (2012).  https://doi.org/10.1016/j.foodhyd.2011.02.018 CrossRefGoogle Scholar
  18. 18.
    V.R. Sinija, H.N. Mishra, Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. J. Food Eng. 86, 494–500 (2008).  https://doi.org/10.1016/j.jfoodeng.2007.10.026 CrossRefGoogle Scholar
  19. 19.
    K. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems. Pet. Coal 156, 2–10 (2010).  https://doi.org/10.1016/j.cej.2009.09.013 Google Scholar
  20. 20.
    A. Ferradji, A. Malek, Isothermes d’Adsorption des Abricots Secs à 25 °C et 45 °C. Rev. Des Energies Renouvelables 8, 39–48 (2005)Google Scholar
  21. 21.
    E. Tsami, Net isosteric heat of sorption in dried fruits. J. Food Eng. 14, 327–335 (1991).  https://doi.org/10.1016/0260-8774(91)90022-K CrossRefGoogle Scholar
  22. 22.
    N. Abdenouri, A. Idlimam, M. Kouhila, Sorption isotherms and thermodynamic properties of powdered milk. Chem. Eng. Commun. 197, 1109–1125 (2010).  https://doi.org/10.1080/00986440903412936 CrossRefGoogle Scholar
  23. 23.
    R.J. Aguerre, C. Suarez, P.E. Viollaz, Enthalpy–entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms. J. Food Sci. 51, 1547–1549 (1986).  https://doi.org/10.1111/j.1365-2621.1986.tb13856.x CrossRefGoogle Scholar
  24. 24.
    A.L. Gabas, F.C. Menegalli, J. Telis-Romero, Water sorption enthalpy-entropy compensation based on isotherms of plum skin and pulp. J. Food Sci. 65, 680–684 (2000).  https://doi.org/10.1111/j.1365-2621.2000.tb16072.x CrossRefGoogle Scholar
  25. 25.
    M.D. Liébanes, J.M. Aragón, M.C. Palancar, G. Arévalo, D. Jiménez, Equilibrium moisture isotherms of two-phase solid olive oil by-products: adsorption process thermodynamics. Colloids Surf. A 282–283, 298–306 (2006).  https://doi.org/10.1016/j.colsurfa.2006.03.025 CrossRefGoogle Scholar
  26. 26.
    S. Mghazli, A. Idlimam, M. Mahrouz, L. Lahnine, N. Hidar, M. Ouhammou, M. Mouhib, S. Zantar, M. Bouchdoug, Comparative moisture sorption isotherms, modelling and isosteric heat of sorption of controlled and irradiated Moroccan rosemary leaves. Ind. Crops Prod. 88, 28–35 (2016).  https://doi.org/10.1016/j.indcrop.2016.02.050 CrossRefGoogle Scholar
  27. 27.
    L. Lahnine, A. Idlimam, M. Mahrouz, A. Jada, H. Hanine, M. Mouhib, S. Zantar, M. Kouhila, Adsorption measurements and modeling of thyme treated with gamma irradiation and thermal-biochemical treatment. Ind. Crops Prod. (2015).  https://doi.org/10.1016/j.indcrop.2016.02.049 Google Scholar
  28. 28.
    L. Lahnine, A. Idlimam, M. Mahrouz, A. Jada, M. Kouhila, H. Hanine, M. Bouchdoug, Comparative sorption isotherms of conserved Thymus satureioides. Moroccan J. Chem. 4, 128–139 (2016)Google Scholar
  29. 29.
    M. Barati, D. Zare, A. Zomorodian, Moisture sorption isotherms and thermodynamic properties of safflower seed using empirical and neural network models. J. Food Meas. Charact. 10, 236–246 (2016).  https://doi.org/10.1007/s11694-015-9298-4 CrossRefGoogle Scholar
  30. 30.
    C.S. Ethmane Kane, M. Kouhila, A. Lamharrar, A. Idlimam, M. Mimet, Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. Int. J. Food Sci. Technol. 11, 181–195 (2008).  https://doi.org/10.1111/j.1365-2621.2008.01716.x Google Scholar
  31. 31.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  32. 32.
    C. van den Berg, S. Bruin, Water activity and its estimation in food systems: theoretical aspects, in Water Activity: Influences on Food Quality, ed. by L.B. Rockland, G.F. Stewart (Academic Press, New York, 1981), pp. 147–177Google Scholar
  33. 33.
    D. Argyropoulos, J. Müller, Effect of convective-, vacuum- and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). J. Appl. Res. Med. Aromat. Plants 1, 59–69 (2014).  https://doi.org/10.1016/j.jarmap.2014.06.001 Google Scholar
  34. 34.
    L. Červenka, L. Hloušková, S. Žabčíková, Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis). Food Biosci. 12, 122–127 (2015).  https://doi.org/10.1016/j.fbio.2015.10.001 CrossRefGoogle Scholar
  35. 35.
    R. Martínez-Las Heras, A. Heredia, M.L. Castelló, A. Andrés, Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Biosci. 7, 88–94 (2014).  https://doi.org/10.1016/j.fbio.2014.06.002 CrossRefGoogle Scholar
  36. 36.
    B.S. Sangeeta, Hathan, Sorption behavior, thermodynamic properties and storage stability of ready-to-eat Elephant Foot Yam (Amorphophallus spp.) product: physic-chemical properties, minerals, total dietary fiber and phenolic content of stored product. J. Food Meas. Charact. 11, 401–416 (2017).  https://doi.org/10.1007/s11694-016-9408-y CrossRefGoogle Scholar
  37. 37.
    A. Zungur Bastıoğlu, M. Koç, F. Kaymak, Ertekin, Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. J. Food Meas. Charact. 11, 1295–1305 (2017).  https://doi.org/10.1007/s11694-017-9507-4 CrossRefGoogle Scholar
  38. 38.
    L.H. Mosquera, G. Moraga, N. Martínez-Navarrete, Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Res. Int. 47, 201–2016 (2012).  https://doi.org/10.1016/j.foodres.2011.05.019 CrossRefGoogle Scholar
  39. 39.
    Q. Rao, T.P. Labuza, Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders. Food Chem. 132, 373–384 (2012).  https://doi.org/10.1016/j.foodchem.2011.10.107 CrossRefGoogle Scholar
  40. 40.
    M.D. Torres, R. Moreira, F. Chenlo, M.J. Vázquez, Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydr. Polym. 89, 592–598 (2012).  https://doi.org/10.1016/j.carbpol.2012.03.055 CrossRefGoogle Scholar
  41. 41.
    M.O. Oluwamukomi, Adsorption isotherm modeling of soy-melon-enriched and un-enriched “gari” using GAB equation. J. Food Sci. 3, 117–124 (2009)Google Scholar
  42. 42.
    S. Simal, A. Femenia, A. Castell-Palou, C. Rossello, Water desorption thermodynamic properties of pineapple. J. Food Eng. 80, 1293–1301 (2007).  https://doi.org/10.1016/j.jfoodeng.2006.10.001 CrossRefGoogle Scholar
  43. 43.
    L.E. Kurozawa, R.A. de Oliveira, M.D. Hubinger, K.J. Park, Thermodynamic properties of water desorption of papaya. J. Food Process. Preserv. 39, 2412–2420 (2015).  https://doi.org/10.1111/jfpp.12491 CrossRefGoogle Scholar
  44. 44.
    P. Correa, Evaluation of thermodynamic properties using GAB model to describe the desorption process of cocoa beans. Int. J. Food Sci. Technol. (2011).  https://doi.org/10.1111/j.1365-2621.2011.02719.x Google Scholar
  45. 45.
    A.L.D. Goneli, P.C. Corrêa, G.H.H. Oliveira, P.C. Afonso, Júnior, Water sorption properties of coffee fruits, pulped and green coffee. LWT Food Sci. Technol. 50, 386–391 (2013).  https://doi.org/10.1016/j.lwt.2012.09.006 CrossRefGoogle Scholar
  46. 46.
    M. Edrisi Sormoli, T.A.G. Langrish, Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT Food Sci. Technol. 62, 875–882 (2015).  https://doi.org/10.1016/j.lwt.2014.09.064 CrossRefGoogle Scholar
  47. 47.
    S.Y. Quek, N.K. Chok, P. Swedlund, The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 46, 386–392 (2007).  https://doi.org/10.1016/j.cep.2006.06.020 CrossRefGoogle Scholar
  48. 48.
    A. Idlimam, A. Lamharrar, N. Abdenouri, C.S. Ethmane Kane, S. Akkad, A. Jamali, M. Kouhila, Thermodynamic properties and moisture sorption isotherms of Argania spinosa and Zygophyllum gaetulum. J. Agron. 7, 1–14 (2008)CrossRefGoogle Scholar
  49. 49.
    A. Jamali, M. Kouhila, L.A. Mohamed, A. Idlimam, A. Lamharrar, Moisture adsorption–desorption isotherms of Citrus reticulata leaves at three temperatures. J. Food Eng. 77, 71–78 (2006).  https://doi.org/10.1016/j.jfoodeng.2005.06.045 CrossRefGoogle Scholar
  50. 50.
    H. Machhour, A. Idlimam, M. Mahrouz, I. El Hadrami, M. Kouhila, Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment. J. Mater. Environ. Sci. 3, 232–247 (2012)Google Scholar
  51. 51.
    A. Lamharrar, A. Idlimam, M. Cherkaoui, L. Lahnine, M. Kouhila, Thermodynamic properties and modeling of sorption isotherms for longer storage of Urtica urens leaves. Int. J. Mod. Eng. Res. 4, 23–30 (2014)Google Scholar
  52. 52.
    T.P. Labuza, B. Altunakar, Water Activity Prediction and Moisture Sorption Isotherms (Wiley, New York, 2008).  https://doi.org/10.1002/9780470376454.ch5 Google Scholar
  53. 53.
    P. Fellows, Food Processing Technology: Principles and Practice (CRC Press, Boca Raton, 2009). http://www.sciencedirect.com/science/book/9781845692162. Accessed 5 Mar 2017
  54. 54.
    S. Lahsasni, M. Kouhila, M. Mahrouz, Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica). Energy Convers. Manag. 45, 249–261 (2004).  https://doi.org/10.1016/S0196-8904(03)00133-X CrossRefGoogle Scholar
  55. 55.
    L. Lahnine, A. Idlimam, M. Mahrouz, M. Kouhila, H. Hanine, M. Mouhib, S. Zantar, A. Jaouad, Thermodynamical properties of conserved thyme after gamma irradiation and thermal-biochemical treatment. J. Mater. Environ. Sci. 6, 2418–2426 (2015)Google Scholar
  56. 56.
    O. Bensebia, K. Allia, Analysis of adsorption-desorption moisture isotherms of rosemary leaves. J. Appl. Res. Med. Aromat. Plants 3, 79–86 (2016).  https://doi.org/10.1016/j.jarmap.2016.01.005 Google Scholar
  57. 57.
    C. Carvalho Lago, C.P.Z. Norena, Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Biosci. 12, 26–33 (2015).  https://doi.org/10.1016/j.fbio.2015.07.001 CrossRefGoogle Scholar
  58. 58.
    Y.N. NkoloMeze’e, J. Noah Ngamveng, S. Bardet (2008) Effect of enthalpy-entropy 637 compensation during sorption of water vapour in tropical woods: The case of Bubinga 638 (Guibourtia Tessmanii J. Léonard; G. Pellegriniana J.L.). Thermochim. Acta 468, 1–5.  https://doi.org/10.1016/j.tca.2007.11.002 CrossRefGoogle Scholar
  59. 59.
    A.D. Goneli, P.C. Corrêa, G.H.H. Oliveira, F.M. Botelho, Water desorption and thermodynamic properties of okra seeds. Trans. ASABE 53, 191–197 (2010).  https://doi.org/10.13031/2013.29486 CrossRefGoogle Scholar
  60. 60.
    A.L.D. Goneli, P.C. Corrêa, G.H.H. De Oliveira, C.F. Gomes, F.M. Botelho, Water sorption isotherms and thermodynamic properties of pearl millet grain. Int. J. Food Sci. Technol. 45, 828–838 (2010).  https://doi.org/10.1111/j.1365-2621.2010.02208.x CrossRefGoogle Scholar
  61. 61.
    R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis. J. Phys. Chem. 80, 2335–2341 (1976).  https://doi.org/10.1021/j100562a006 CrossRefGoogle Scholar
  62. 62.
    M. Noshad, M. Mohebbat, F. Shahidi, A.M. Seyed, Effect of osmosis and ultrasound pretreatment on the moisture adsorption isotherms of quince. Food Bioprod. Process. 90, 266–274 (2012).  https://doi.org/10.1016/j.fbp.2011.06.002 CrossRefGoogle Scholar
  63. 63.
    S.P.S. Rawat, D.P. Khali, Enthalpy-entropy compensation during sorption of water in wood. J. Appl. Polym. Sci. 60, 787–790 (1996)CrossRefGoogle Scholar
  64. 64.
    S. Kaya, T. Kahyaoglu, Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed. J. Food Eng. 76, 139–147 (2006).  https://doi.org/10.1016/j.jfoodeng.2005.04.042 CrossRefGoogle Scholar
  65. 65.
    R. Moreira, F. Chenlo, M.D. Torres, N. Vallejo, Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. J. Food Eng. 88, 514–521 (2008).  https://doi.org/10.1016/j.jfoodeng.2008.03.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nadia Hidar
    • 1
  • Mourad Ouhammou
    • 1
  • Ali Idlimam
    • 2
  • Abderrahim Jaouad
    • 1
  • Mohamed Bouchdoug
    • 3
  • Abdelkader Lamharrar
    • 2
  • Mohammed Kouhila
    • 2
  • Mostafa Mahrouz
    • 1
  1. 1.ERIDDECV (Research Team of Innovation and Sustainable Development & Expertise in Green Chemistry), Department of Chemistry, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakeshMorocco
  2. 2.LESPAM Laboratory of Solar Energy and Medicinal Plants, Teacher’s Training CollegeCadi Ayyad UniversityMarrakechMorocco
  3. 3.REMATOP (Research Laboratory on Materials Reactivity and Process Optimization), Department of Chemistry, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations