Journal of Food Measurement and Characterization

, Volume 12, Issue 3, pp 1935–1946 | Cite as

The kinetics and thermodynamics study of bioactive compounds and antioxidant degradation of dried banana (Musa ssp.) slices using controlled humidity convective air drying

  • Frederick Sarpong
  • Xiaojie Yu
  • Cunshan Zhou
  • Leticia Peace Amenorfe
  • Junwen Bai
  • Bengang Wu
  • Haile Ma
Original Paper


Investigating the kinetics of bioactive and antioxidant compounds in food are very crucial in understanding the degradation reaction during storage and processing. To understand the ameliorative effect of relative humidity (RH) and predict accurately the degradation of bioactive and antioxidant compounds of banana slice using RH-convective hot air dryer, this study was conducted. Drying was investigated under three RH (10, 20 and 30%) and temperatures (60, 70 and 80 °C) at 2.0 m/s air velocity. Two mathematical models describing degradation of food properties were employed and results were compared to their goodness of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced Chi square (\({\chi ^2}\)). First-order model could satisfactorily describe degradation bioactive and antioxidant compounds of drying of banana slices with highest R2, and lowest RMSE and\(~{\chi ^2}\). The enthalpy changes were significantly (p < 0.05) difference among RH conditions. Again, non-spontaneous reaction and lower structural freedom of the transition state compared with reactant were observed in the degradation bioactive and antioxidant as a result of positive and negative values of Gibbs free energy and entropy changes respectively. The results reveal that a range of 4.5–10.7% of these compounds in dried banana slices were retained by 10% increase in RH. This suggests that higher drying temperatures can be applied to achieve higher retention of nutrients and shorten drying time when higher RH drying conditions are considered in the food industry.


Phenolic Flavonoid Antioxidant Relative humidity Degradation kinetic 



Relative humidity


Activation energy


Gibbs free energy change


Enthalpy change


Entropy change


Kinetic parameters


Coefficient of correlation

\({\chi ^2}\)

Chi square


Root mean square error


Number of observations


Number of constants


Arrhenius constant




Ferric reducing antioxidant power


Total Phenolic content


Total Flavonoid content


Water activity


Decimal reduction

\(\Delta {\text{E}}\)

Total color difference


Effective moisture diffusivity



The authors are grateful for the support provided by the National Natural Science Foundation of China (21676125), the National Key Research and Development Program of China (2016YFD0400705-04, 2017YFD0400903), the National High-tech Research and Development Program of China (2013AA102203-02), the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements (BA2016169), the Policy Guidance Program (Research Cooperation) of Jiangsu (BY2016072-03) and the Social Development Program (General Project) of Jiangsu (BE2016779).


  1. 1.
    D. Workman, Bananas Exports by Country. [cited 2017 8/3]; Available from
  2. 2.
    H.T. Vu, C.J. Scarlett, Q.V. Vuong, Dry Technol. 35, 1141 (2017)CrossRefGoogle Scholar
  3. 3.
    İ. Doymaz, Heat Mass Trans. 53, 25 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Ji, G. Srzednicki, Extraction of Aromatic Compounds from Banana Peels. International Society for Horticultural Science (ISHS) (Leuven, Belgium, 2015)Google Scholar
  5. 5.
    F. Sarpong, X. Yu, C. Zhou, Y. Hongpeng, B.B. Uzoejinwa, J. Bai, B. Wu, H. Ma, Food Meas. (2018). CrossRefGoogle Scholar
  6. 6.
    L. Zhou, Z. Cao, J. Bi, J. Yi, Q. Chen, X. Wu, M. Zhou, Inter, J. Food Sci. Technol. 51, 842 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Kumar, M.A. Karim, M.U.H. Joardder, J. Food Eng. 121, 48 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Lago, C.P.Z. Noreña, J. Food Sci. Technol. 54, 4197 (2017)CrossRefPubMedGoogle Scholar
  9. 9.
    B. Mohanta, S.K. Dash, M.K. Panda, G.R. Sahoo, J. Food Sci. Technol. 51, 673 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    E. Demiray, Y. Tulek, Inter, J. Food Prop. 20, 151 (2017)CrossRefGoogle Scholar
  11. 11.
    A.M. Goula, K.G. Adamopoulos, Dry Technol. 28, 752 (2010)CrossRefGoogle Scholar
  12. 12.
    M.A. Summen, H.S. Erge, J. Food Process. Preserv. 38, 551 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, X. Liao, Y. Ni, J. Wu, X. Hu, Z. Wang, F. Chen, Euro Food Res. Technol. 224, 597 (2007)CrossRefGoogle Scholar
  14. 14.
    AOAC, Official Method of Analysis. (AOAC, Arlington, 1990)Google Scholar
  15. 15.
    İ Doymaz, S. Karasu, M. Baslar, Food Meas. 10, 283 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Lopez, A. Iguaz, A. Esnoz, P. Virseda, Dry Technol. 18, 995 (2000)CrossRefGoogle Scholar
  17. 17.
    A.L. Waterhouse, Curr. Protoc. Food Anal. Chem. (2002). CrossRefGoogle Scholar
  18. 18.
    R. Szôllôsi, I.S. Varga, Acta Biologica Szegediensis 46, 125 (2002)Google Scholar
  19. 19.
    A. Ruangchakpet, S. Tanaboon, Kasetsart J (Nat Sci) 41, 331 (2007)Google Scholar
  20. 20.
    M. Alothman, R. Bhat, A.A. Karim, Food Chem 115, 785 (2009)CrossRefGoogle Scholar
  21. 21.
    L. Méndez-Lagunas, J. Rodríguez-Ramírez, M. Cruz-Gracida, S. Sandoval-Torres, G. Barriada-Bernal, Food Chem. 230, 174 (2017)CrossRefPubMedGoogle Scholar
  22. 22.
    C. Henríquez, A. Córdova, S. Almonacid, J. Saavedra, J. Food Eng. 143, 146 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Demiray, Y. Tulek, J. Food Process. Preserv. 39, 800 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Qiu, D. Wang, X. Song, Y. Deng, Y. Zhao, Food Res. Int. (2017)Google Scholar
  25. 25.
    G.D. Mercali, P.D. Gurak, F. Schmitz, L.D.F. Marczak, Food Chem. 171, 200 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    Z. Zoric, V. Dragovic-Uzelac, S. Pedisic, Z. Kurtanjek, I.E. Garofulic, Food Technol. Biotech. 52, 101 (2014)Google Scholar
  27. 27.
    A. Taheri-Garavand, S. Rafiee, A. Keyhani, Int. Trans. J. Eng. 2, 239 (2011)Google Scholar
  28. 28.
    S. Mghazli, M. Ouhammou, N. Hidar, L. Lahnine, A. Idlimam, M. Mahrouz, Renew. Energy 108, 303 (2017)CrossRefGoogle Scholar
  29. 29.
    M.S.H. Sarker, M.N. Ibrahim, N.A. Aziz, M.S. Punan, Dry Technol. 31, 286 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Ponkham, N. Meeso, S. Soponronnarit, S. Siriamornpun, Food Bioprod. Process. 90, 155 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Shi, Z. Pan, T. McHugh, D. Wood, Y. Zhu, R. Avena-Bustillos, E. Hirschberg, J. Food Sci. 73, E259 (2008)CrossRefPubMedGoogle Scholar
  32. 32.
    G.D. Saravacos, A.E. Kostaropoulos, Handbook of Food Processing Equipment. (Springer, New York, 2002)CrossRefGoogle Scholar
  33. 33.
    A. Saxena, T. Maity, P. Raju, A. Bawa, Food Bioprocess. Technol. 5, 672 (2012)CrossRefGoogle Scholar
  34. 34.
    K.S. Silva, C.C. Garcia, L.R. Amado, M.A. Mauro, Food Bioprocess. Technol. 8, 1465 (2015)CrossRefGoogle Scholar
  35. 35.
    R. Gupta, P. Kumar, A. Sharma, R. Patil, Int. J. Food Prop. 14, 1232 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Ikoko, V. Kuri, Food Chem. 102, 523 (2007)CrossRefGoogle Scholar
  37. 37.
    M.N. Islam, M. Zhang, H. Liu, C. Xinfeng, Food Bioprod. Process. 94, 229 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Frederick Sarpong
    • 1
  • Xiaojie Yu
    • 1
  • Cunshan Zhou
    • 1
    • 2
  • Leticia Peace Amenorfe
    • 3
  • Junwen Bai
    • 1
  • Bengang Wu
    • 1
  • Haile Ma
    • 1
    • 2
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Technology Integration Base for Vegetable Dehydration Processing Ministry of AgricultureJiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.Department of ChemistryKwame Nkrumah University of Science and TechnologyKumasiGhana

Personalised recommendations