Optimisation extraction procedure and identification of phenolic compounds from fractional extract of corn silk (Zea mays hair) using LC-TOF/MS system

  • H. Nurraihana
  • W. I. Wan Rosli
  • S. Sabreena
  • N. A. Norfarizan-Hanoon
Original Paper

Abstract

Presently, there is an increased interest in the production and purification of vegetable extracts by both pharmacological and medicinal sectors. This study aimed to optimise the phenolic extraction of corn silk and to identify phenolic compounds of the fractional extract of corn silk. Single factor experiment was used to optimise the extraction parameters. The liquid chromatography-quadrupole time-of-flight-mass spectrometer (LC-TOF/MS) system was used to identify different types of phenolic compounds in the selected fractions. The optimum conditions (i.e. extraction time of 30 min, extraction temperature of 50 °C, the solid-to-solvent ratio of 1:10 and 40% ethanol) were obtained. The corn silk was extracted using the optimum conditions and the extracted was further fractionated with hexane and ethyl acetate, subsequently. The ethyl acetate fraction exhibited the most significant free radical-scavenging activity and the highest amount of total phenolic compounds. Therefore, ethyl acetate fraction was subjected to further analysis using LC-TOF/MS. A total of 26 compounds were identified. The fractional extract was found to be rich in flavonoid compounds such as flavones, flavonols, flavanols, flavone C-glycosides, flavonols, flavonol O-glycosides, and isoflavonoids. Flavanols were the major group of flavonoids found in this fractional extract. In summary, ethyl acetate fraction of corn silk can be a good source of phenolic compounds that can be useful for application in both nutraceutical and pharmaceutical sectors.

Keywords

Corn silk Extraction parameters Phenolic compounds Flavonoids LC-TOF/MS 

Notes

Acknowledgements

Special thanks go to Ministry of Higher Education (MOHE) of Malaysia and Universiti Sains Malaysia. This research was supported by Grants from MOHE of Malaysia (203/PPSK/6171190).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds. Molecules 18, 2328–2375 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Vauzour, K. Vafeiadou, J.P.E. Spencer, in Phytonutrients, ed. By A. Salter, H. Wiseman, G. Tucker. (Wiley-Blackwell, Chichester, 2012), pp. 110–145CrossRefGoogle Scholar
  3. 3.
    D. Lamoral-Theys, L. Pottier, F. Dufrasne, J. Neve, J. Dubois, A. Kornienko, R. Kiss, L. Ingrassia, Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr. Med. Chem. 17, 812–825 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Dai, R.J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Spatafora, C. Tringali, Natural-derived polyphenols as potential anticancer agents. Med. Chem. 12, 902–918 (2012)Google Scholar
  6. 6.
    M. Kampa, A.-P. Nifli, G. Notas, E. Castanas, Polyphenols and cancer cell growth. Rev. Physiol. Biochem. Pharmacol. 159, 79–113 (2007)Google Scholar
  7. 7.
    P. Fresco, F. Borges, M.P.M. Marques, C. Diniz, The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr. Pharm. Des. 16, 114–134 (2010)CrossRefGoogle Scholar
  8. 8.
    Z. Bahadoran, P. Mirmiran, F. Azizi, Dietary polyphenols as potential nutraceuticals in the management of diabetes: a review. J. Diabetes Metab. Disord. 12, 43 (2013)CrossRefGoogle Scholar
  9. 9.
    F.F. Anhê, Y. Desjardins, G. Pilon, S. Dudonné, M.I. Genoves, F.M. Lajol, A. Marette, Polyphenols and type 2 diabetes: a prospective review. PharmaNutrition 1, 105–114 (2013)CrossRefGoogle Scholar
  10. 10.
    A.M. Ali, Anti-diabetic potential of phenolic compounds: a review. Int. J. Food Prop. 16, 91–103 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Habtemariam, G.K. Varghese, The antidiabetic therapeutic potential of dietary polyphenols. Curr. Pharm. Biotechnol. 15, 91–400 (2014)CrossRefGoogle Scholar
  12. 12.
    R.M. van Dam, N. Naidoo, R. Landberg, Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr. Opin. Lipidol. 24, 5–33 (2013)Google Scholar
  13. 13.
    B. Manach, A. Mazur, A. Scalbert, Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol. 16, 77–84 (2005)CrossRefGoogle Scholar
  14. 14.
    L.B.M. Tijburg, T. Matter, J.D. Folts, U.M. Weisgerbe, M.B. Katan, Tea flavonoids and cardiovascular diseases: a review. Crit. Rev. Food Sci. Nutr. 37, 771–785 (1997)CrossRefGoogle Scholar
  15. 15.
    M. Quiñones, M. Miguel, A. Aleixandre, Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 68, 125–131 (2013)CrossRefGoogle Scholar
  16. 16.
    T.M. Takeuchi, C.G. Pereir, M.E.M. Braga, M.R.J. Maróstica, P.F. Leal, M.A.A. Meireles, in Extracting bioactive compounds for food products: theory and application, ed. by M.A.A. Meireles (CRC Press, Boca Raton, 2009), pp. 138–218Google Scholar
  17. 17.
    M.-T. Ren, J. Chen, Y. Song, L.-S. Sheng, P. Li, L.-W. Qi, Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 48, 1351–1360 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Guo, T. Liu, L. Han, Y. Liu, The effects of corn silk on glycaemic metabolism. Nutr. Metab. 6, 47 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Maksimović, Đ Malenčić, N. Kovačević, Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 96, 873–877 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Liu, S. Lin, Z. Wang, C. Wang, E. Wang, Y. Zhang, J. Liu, Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food Bioprod. Process. 89, 333–339 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Hasanudin, P. Hashim, S. Mustafa, Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 17, 9697–9715 (2012)CrossRefGoogle Scholar
  22. 22.
    S.W. Chan, C.Y. Lee, C.F. Yap, C.W. W.A.W.Mustapha, Ho, Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int. Food Res. J. 16, 203–213 (2009)Google Scholar
  23. 23.
    C. Maheshwari, M.Y. Kumar, S.K. Verma, V.K. Singh, S.N. Singh, Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 49, 2422–2428 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Miliauskas, P.R. Venskutonis, T.A.Van Beek, Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85, 231–237 (2008)CrossRefGoogle Scholar
  25. 25.
    J. Han, X. Weng, K. Bi, Antioxidants from a Chinese medicinal herb-Lithospermum erythrorhizon. Food Chem. 106, 2–10 (2008)CrossRefGoogle Scholar
  26. 26.
    Y.Y. Lim, T.T. Lim, J.J. Tee, Antioxidant properties of several tropical fruits: a comparative study. Food Chem. 103, 1003–1008 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Jakopič, R. Veberič, Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agriculturae Slovenica 93, 11–15 (2009)Google Scholar
  28. 28.
    L. Tomsone, Z. Kruma, R. Galoburda, Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). World Acad. Sci. Eng. Technol. 64, 903–908 (2012)Google Scholar
  29. 29.
    I.S.C. Sulaiman, M. Basri, H.R.F. Masoumi, W.J. Chee, S.E. Ashari, M. Ismail, Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J. 11, 54 (2017)CrossRefGoogle Scholar
  30. 30.
    P.W. Tan, C.P. Ta, C.W. Ho, Antioxidant properties: effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). Int. Food Res. J. 18, 557–562 (2011)Google Scholar
  31. 31.
    D.T.P. Lien, P.T.B. Tram, H.T. Toan, Effects of extraction process on phenolic content and antioxidant activity of soybean. J. Food Nutri. Sci. 3, 33–38 (2015)Google Scholar
  32. 32.
    P.W. Tan, C.P. Tan, C.W. Ho, Antioxidant properties: effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). Int. Food Res. J. 18, 557–562 (2011)Google Scholar
  33. 33.
    S. La, C.M. Sia, G.A. Akowuah, P.N. Okechukwu, H.S. Yim, The effect of extraction conditions on total phenolic content and free radical scavenging capacity of selected tropical fruits’ peel. Health Environ. J. 4, 80–102 (2013)Google Scholar
  34. 34.
    M. Nakamura, J.-H. Ra, Y. Jee, J.-S. Kim, Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J. Food Drug Analys. 25, 316–326 (2017)CrossRefGoogle Scholar
  35. 35.
    N. Das, M.E. Islam, N. Jahan, M.S. Islam, A. Khan, M.R. Islam, M.S. Parvin, Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Complement. Altern. Med. 14, 5 (2014)CrossRefGoogle Scholar
  36. 36.
    J.B. Harborne, H. Baxter, in The Handbook of Natural Flavonoids, vol. 2. ed. by J.B. By, H. Harborne, Baxter (John Wiley & Sons, Chichester, 1999)Google Scholar
  37. 37.
  38. 38.
    M. Martínez-Vázquez, T.O.R. Apan, A.L. Lastra, R. Bye, A comparative study of the analgesic and anti-inflammatory activities of pectolinarin isolated from Cirsium subcoriaceum and linarin isolated from Buddleia cordata. Planta Med. 64, 134–137 (1998)CrossRefGoogle Scholar
  39. 39.
    H. Lim, K.H. Son, H.W. Chang, K. Bae, S.S. Kang, H.P. Kim, Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol. Pharm. Bull. 31, 2063–2067 (2008)CrossRefGoogle Scholar
  40. 40.
    HMDB, Showing metabocard for Apigenin 7-O-(2″-O-acetylglucoside) (HMDB37341). (2017). http://www.hmdb.ca/metabolites/HMDB37341. Accessed 6 March 2017
  41. 41.
    S. Kitanaka, M. Takido, Studies on the constituents of the Leaves of Cassia torosa Cav. II. The structure of two novel flavones, Torosaflavone C and D. Chem. Pharm. Bull. 39, 3254–3257 (1991)CrossRefGoogle Scholar
  42. 42.
    K. Chakrabarty, H.M. Chawla, D.K. Rastogi, Javanin, a new flavone rhamnoside from Cassia javanica immature leaves. Indian J. Chem. Sect. B. 23, 543–545 (1984)Google Scholar
  43. 43.
    J.L. Ingham, K.R. Markham, S.Z. Dziedzic, G.S. Pope, Puerarin 6 ″-O-β-apiofuranoside, a C-glycosylisoflavone O-glycoside from Pueraria mirifica. Phytochemistry 25, 1772–1775 (1986)CrossRefGoogle Scholar
  44. 44.
    M.E. Sakalem, G. Negri, R. Tabach, Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Rev. Bras. Farmacogn. 22, 1219–1232 (2012)CrossRefGoogle Scholar
  45. 45.
    G. Flamini, Flavonoids and other compounds from the aerial parts of Viola etrusca. Chem. Biodivers. 4, 139–144 (2007)CrossRefGoogle Scholar
  46. 46.
    M. Kaneta, N. Sugiyama, Identification of flavone compounds in eighteen Gramineae species. Agric. Biol. Chem. 37, 2663–2665 (1973)CrossRefGoogle Scholar
  47. 47.
    A. Wollenweber, J. Favre-Bonvin, M. Jay, A novel type of flavonoids: flavonol esters from fern exudates. Zeitschrift für Naturforschung C 33, 831–835 (1978)Google Scholar
  48. 48.
    K. Cimanga, T. De Bruyne, A. Lasure, Q. Li, L. Pieters, M. Claeys, D.V. Berghe, K. Kambu, L. Tona, A. Vlietinck, Flavonoid O-glycosides from the leaves of Morinda morindoides. Phytochemistry 38, 1301–1303 (1995)CrossRefGoogle Scholar
  49. 49.
    A. Brito, J.E. Ramirez, C. Areche, B. Sepúlveda, M.J. Simirgiotis, HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421 (2014)CrossRefGoogle Scholar
  50. 50.
    H. Michael, J. Salib, M. Ishak, New methoxyflavone glycosides from Verbena bipinnatifida Nutt. Die Pharmazie. 56, 348–349 (2001)Google Scholar
  51. 51.
    M. Leone, D. Zhai, S. Sareth, S. Kitada, J.C. Reed, M. Pellecchia, Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 63, 8118–8121 (2003)Google Scholar
  52. 52.
    A.L. Davis, Y. Cai, A.P. Davies, J.R. Lewis, 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 34, 887–890 (1996)CrossRefGoogle Scholar
  53. 53.
    X. Wan, H.E. Nursten, Y. Cai, A.L. Davis, J.P.G. Wilkins, A.P. Davies, A new type of tea pigment-from the chemical oxidation of epicatechin gallate and isolated from tea. J. Sci. Food Agric. 74, 401–408 (1997)CrossRefGoogle Scholar
  54. 54.
    S.J. Baek, J.-S. Kim, F.R. Jackson, T.E. Eling, M.F. McEntee, S.-H. Lee, Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425–2432 (2004)CrossRefGoogle Scholar
  55. 55.
    Z. Zhou, C. Yang, Chemical constituents of crude green tea, the material of Pu-er tea in Yunnan. Acta Bot. Yunnanica 22, 343–350 (1999)Google Scholar
  56. 56.
    R. Amarowicz, F. Shahidi, Presence of two forms of methylated (−)-epigallocatechin-3-gallate in green tea. Mol. Nutri. Food Res. 47, 21–23 (2003)Google Scholar
  57. 57.
    Y. Fujimura, H. Tachibana, M. Maeda-Yamamoto, T. Miyase, M. Sano, K. Yamada, Antiallergic tea catechin, (−)-epigallocatechin-3-O-(3-O-methyl)-gallate, suppresses FcεRI expression in human basophilic KU812 cells. J. Agric. Food Chem. 50, 5729–5734 (2002)CrossRefGoogle Scholar
  58. 58.
    M. Cheng, X. Zhang, Y. Miao, J. Cao, Z. Wu, P. Weng, The modulatory effect of (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3 ″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res. Int. 92, 9–16 (2017)CrossRefGoogle Scholar
  59. 59.
    A. Hashimoto, G.-I. Nonaka, I. Nishioka, Tannins and related compounds. LVI. Isolation of four new acylated flavan-3-ols from oolong tea. Chem. Pharm. Bull. 35, 611–616 (1987)CrossRefGoogle Scholar
  60. 60.
    N. Morita, M. Arisawa, Y. Kondo, T. Takemoto, Studies on constituents of Iris genus plants. III. The constituents of Iris florentina L. Chem. Pharm. Bull. 21, 600–603 (1973)CrossRefGoogle Scholar
  61. 61.
    K. Gopinath, A. Kidwai, L. Prakash, The chemical examination of Iris nepalensis—I: structure of irisolone. Tetrahedron 16, 201–205 (1961)CrossRefGoogle Scholar
  62. 62.
    J.L. Ingham, Fungal modification of pterocarpan phytoalexins from Melilotus alba and Trifolium pratense. Phytochemistry 15, 1489–1495 (1976)CrossRefGoogle Scholar
  63. 63.
    T.R. Govindachari, K. Nagarajan, B.R. Pai, Chemical examination of Wedelia calendulacea. Part I. structure of wedelolactone. J. Chem. Soc.  https://doi.org/10.1039/JR9560000629 Google Scholar
  64. 64.
    S. Sarveswaran, S.C. Gautam, J. Ghosh, Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int. J. Oncol. 41, 2191–2199 (2012)CrossRefGoogle Scholar
  65. 65.
    S.-C. Ren, Z.-L. Liu, X.-L. Ding, Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). J. Med. Plants Res. 3, 1009–1015 (2009)Google Scholar
  66. 66.
    S. Žilić, M. Janković, Z. Basić, J. Vančetović, V. Maksimović, Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): Comparison with medicinal herbs. J. Cereal Sci. 69, 363–370 (2016)CrossRefGoogle Scholar
  67. 67.
    S. Sárosi, J. Bernáth, G. Burchi, M. Antonetti, A. Bertoli, L. Pistelli, S. Benvenuti, Effect of different plant origins and climatic conditions on the total phenolic content and total antioxidant capacity of self-heal (Prunella vulgaris L.). XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): A New Look at Medicinal and Aromatic Plants, 2010. pp. 49–55Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nutrition & Dietetics Department, School of Health SciencesUniversiti Sains MalaysiaKubang KerianMalaysia
  2. 2.Biomedicine Department, School of Health SciencesUniversiti Sains MalaysiaKubang KerianMalaysia

Personalised recommendations